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ABSTRACT 

Modern testbenches often consist of components drawn from multiple languages. In many of these cases, multi-language and 

multi-methodology interaction is not well defined.  In this paper, we will demonstrate the use of e verification components 

(eVCs) in a SystemVerilog/VMM testbench. Several complex issues arise when using SystemVerilog as the “primary” language. 

Initial simulator engine synchronization, random generation ordering, timing problems caused by program blocks, and 

methodology synchronization between the VMM and eRM will all be discussed. 
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1 OVERVIEW 
Modern testbenches often consist of components drawn from 

multiple languages. SystemVerilog, e, OpenVera, SystemC, C, 

C++, Perl, and Python can be found in verification environments 

across the industry.  Additionally, many languages have their 

own unique methodologies (whether open source, home 

grown, or vendor specific). What happens when users want to 

take advantage of verification IP, but the available choices were 

not written in the primary testbench language used for a 

particular project?   

In many of these cases, multi-language and multi-methodology 

interaction is not well defined.  This is certainly the case where 

e verification components (eVCs) are used in a 

SystemVerilog/VMM-based testbench.  e has been around for 

over 14 years.  Companies throughout the industry have 

libraries of eVCs they would like to reuse in new verification 

environments written in SystemVerilog and the VMM.   

In this paper, we will demonstrate the use of e verification 

components (eVCs) in a SystemVerilog/VMM testbench.  After 

defining a terminology mapping between the VMM and eRM, 

the paper will be divided into four main topics. 

First, challenges to interoperability between the SV/VMM 

testbench and e will be discussed.  These challenges include 

compatibility problems caused by use of program blocks in the 

VMM, and issues with method ports in different versions of 

Specman.  

Next, we will review data communications strategies using 

method ports and user-defined adapters. Part of this discussion 

will center on identifying how to minimize the amount of 

adapter code (including SystemVerilog modules and interfaces) 

required to instantiate e code in a SystemVerilog testbench 

while maximizing configurability. We will cover a novel 

mechanism for customizing the specman.svh auto-generated 

header file to add custom VMM extensions to generated 

wrapper classes. 

After describing the framework upon which our interoperability 

solution will be built, we will describe the basic proposed data 

flow for communicating between e and SV. We will discuss how 

to control component instantiation in e via configuration 

generated in SystemVerilog. We will then review the concept of 

a component registry, object wrappers, and synchronization.  

Finally, we will discuss several possible communication paths 

between e and VMM/SV. The following paths will be addressed 

with an eye towards future research: 

 vmm_channel to e sequencer 

 vmm_ms_scenario to e sequencer 

 Straight API calls into eVCs 

We will also discuss synchronizing activities in e with VMM 

phases (both explicit and implicit). 

  

FIGURE 1: EXAMPLE TESTBENCH 

1.1 BACKGROUND 

It is expected that readers of this document will be familiar with 

both e and SystemVerilog, and will have knowledge regarding 

general integration issues that can arise when communicating 

across the e-SV language boundary.  Experienced e-language 

users will be familiar with techniques used to integrate 

SystemVerilog and Verilog components in testbenches where 

Specman is the master.  When using SystemVerilog as the 

master, there are some key differences that must be taken into 

account in areas such as: 

 Simulation initialization 

 Environment randomization 

 Testbench setup (Program block vs. module-based 

testbenches) 

 The need to access methods in e that are part of 

dynamic SVTB components (as opposed to program 

blocks or modules) 

In addition to basic language issues there are methodology 

issues to deal with, such as how to deal with: 

 Push vs. pull-mode stimulus 

 Testbench phase synchronization 

 Coverage collection 

 Data randomization strategies 

One of the driving goals of this paper is to describe a process 

that can be used to integrate the SystemVerilog and e 
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testbenches from a basic language perspective in the absence 

of significant tool automation support. Specifically, an attempt 

has been made to minimize the amount of glue logic that must 

be written and maintained. In some cases, that may reduce the 

functionality available across the interface. Another goal is that, 

to simplify the manual maintenance involved, extensions to 

testbench components will be written in the most convenient 

(usually the native) language. Methodology issues involving 

passing configuration between languages and using appropriate 

base classes for data items will be discussed. Stimulus, 

testbench phase synchronization, coverage collection, and 

randomization strategies will be reviewed with an eye towards 

future development. 

1.2 TERMINOLOGY 

The e Reuse Methodology (eRM) and VMM use different 

terminology when referring to similar testbench components.  

The following map should help users familiar with one of these 

methodologies. 

TABLE 1: TERMINOLOGY MAPPING 

e/eRM VMM Notes 

Agent Subenv, Group  

Bus Functional 
Model (BFM) 

Transactor, 
Driver 

 

Monitor Transactor, 
Monitor 

 

Sequencer, 
Sequence Driver 

Scenario 
Generator, 
Multi-Stream 
Scenario 
Generator 

 

Env Group, Subenv (1) 

Sequence Scenario, Multi-
Stream Scenario 

 

e Verification 
Component (eVC) 

VMM Group (2) 

Method Function  

Time consuming 
method (TCM) 

Task  

 

(1) The vmm_env class was intentionally omitted from the 

table because an env in an e testbench does not 

really map well to a vmm_env. vmm_env is a top-level 

component and cannot be reused. The e env most 

closely matches with vmm_group since the group can 

be reused at any level of the hierarchy and is 

implicitly phased. Implicit phasing aligns well with the 

“infinity-minus generation” in e. 

(2) While there is no direct correlation between the eRM 

and VMM, the closest match is that an eVC is most 

like the VMM group (i.e. both are self-contained 

collections of verification components) 

1.3 OTHER USEFUL TERMINOLOGY 

Some documentation refers to the primary language as the 

“master”, and the foreign methodology as the “slave”. For the 

purpose of this document we will use the same terminology as 

was used in the Accellera VIP Recommended Practices 

document. [1] 

2 CHALLENGES 
Documentation on the interface between Specman and 

SystemVerilog, including configuring Specman to run with VCS, 

can be found by running the command cdnshelp. However, 

there are some issues that should be addressed before getting 

started.   

2.1 METHOD PORTS 

e-language code naturally runs through its “generate” phase 

before SystemVerilog testbench code has a chance to activate.  

Additionally, method ports are not bound until after generation 

in all but very recent versions of Specman, preventing calls to 

method ports from being used during random generation. 

 

FIGURE 2: SPECMAN PHASES BEFORE VMM GEN_CFG() 
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FIGURE 3: UPDATED SPECMAN, PROGRAM BLOCK-BASED VMM 

 

 

FIGURE 4: UPDATED SPECMAN, MODULE-BASED VMM 

There are a couple of implications to this. In a testbench where 

SystemVerilog is the master, it would be ideal to control such 

factors as number of instance of eVCs, address ranges, etc, 

from random variables created in SystemVerilog.  However, 

that information is not available during the generation phase 

for the reasons described above.  Users must either assume all 

random configuration activity for eVCs will be controlled on the 

Specman side, or they must dump relevant configuration 

generated in SystemVerilog to an e-language file that can be 

loaded in when Specman is restarted during the build phase. 

In recent versions of Specman, method ports are bound before 

the generation phase and calls to such methods can be used 

during randomization on the e-language side.  For the rest of 

this document, we will assume access to a version of Specman 

with the relevant method-port support. 

2.2 PROGRAM BLOCKS 

Another potential pitfall for VMM users is related to use of 

program blocks to build testbenches.  The VMM recommends 

that all testbenches be instantiated within a program block.  

However, Specman is optimized to work with testbenches 

written without the use of program blocks.  Because of this 

mismatch, there could be unexpected timing differences 

between eVCs wrapped with SystemVerilog instantiated within 

a program block and e code effectively instantiated within a 

module.  The module instance would behave in the expected 

fashion; the program block instance could have an extra clock 

cycle of delay as events are passed across the e-SV boundary.   

Program blocks also cause another complication.  In versions of 

Specman where it is possible to delay test generation, the call 

to test must occur before the Reactive region. That means the 

test command must be executed twice: once at the beginning 

of the simulation, and once during the VMM build phase 

executed from a program block.  Testbenches written without 

the use of program blocks will not suffer this limitation. 

Additionally, as of March 2010 the VCS “separate compile” flow 

relies on testbench components being encapsulated by a 

program block.  Writing a testbench without program blocks 

will result in a loss of ability to use the “separate compile” 

feature. 

3 COMMUNICATION 
The key to successfully integrating e and SystemVerilog 

verification components is developing a mechanism for easily 

passing data back and forth between the two languages. The 

recommended approach is to use method ports in combination 

with Specman-generated and user-generated adapters. 

3.1 METHOD PORTS 

The most efficient way to pass data between e and 

SystemVerilog is to use method ports.  A method port is 

effectively a tunnel that allows users on either side of the 

tunnel to call TCMs and non-TCMs. One limitation of method 

ports is that they must be bound to a specific module instance 

in SystemVerilog. That is, any SystemVerilog function or task a 

user would like to call from e must exist in a module instance 

corresponding to a SystemVerilog dynamic testbench 
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component that exists elsewhere, as shown in Figure 5. The 

reverse is also true.  If there are multiple instances of an e unit 

that contain a function to be called from SystemVerilog, each 

unit instance must have a unique hdl_path() as shown in 

Figure 8.  Alternately, it is possible to reference methods in 

units based on a unique ID.  Figure 6 demonstrates how a user 

can access multiple eVC instances from a single SVTB object by 

using the eVCs ID.  Figure 7 shows a more complex scenario 

where there are multiple SVTB and e objects that must 

communicate with each other. The ID provides us with the 

ability to create a registry that can be used to  more easily map 

between the e and SVTB domains. 

 

FIGURE 5: SINGLE METHOD PORT COMMUNICATION 

 

FIGURE 6: MULTIPLE METHOD PORT COMMUNICATION 

 

 

FIGURE 7: REGISTRY REQUIRED TO ACCESS MULTIPLE SVTB OBJECTS 

 

 

FIGURE 8: NO REGISTRY REQUIRED: 1:1 EVC TO USER_IF MAPPING 

Table 2 summarizes the different types of connections possible 

between e and SV, and whether a registry is required. 

TABLE 2: REGISTRY AND ID REQUIREMENTS BASED ON E, SV 

INTERFACE, AND SVTB INSTANCE COUNT 

SVTB  Interfaces e  Registry ID 

1 1 1 NO NO 

1 1 Many NO YES 

Many 1 1 YES NO 

Many 1 Many  YES  YES 

Many Many Many NO NO 

 

The recommended solution for dealing with the situation 

shown in Figure 7 is as follows.  For each desired connection 

between e and SV, create one SV interface to be used to 

user_svtb_obj eVC

SV Modules

user_if specman

SystemVerilog TB e

Generated module

method-port

DUT

user_svtb_obj eVC

SV Modules

user_if specman

SystemVerilog TB e

method-port

eVC

method-port

eVC

method-port

eVC

method-port

DUT

Use ID to select 
appropriate instanceGenerated module

user_svtb_obj eVC

SV Modules

user_if specman

SystemVerilog TB e

method-port

eVC

method-port

eVC

method-port

user_svtb_obj
user_svtb_obj

DUT

Use ID to select 
appropriate instance

Registry required

Generated module

user_svtb_obj eVC

SV Modules

user_if specman

SystemVerilog TB e

method-port

eVC

method-port

eVC

method-port

user_svtb_obj
user_svtb_obj

No registry 
required!

user_if
user_if

Use $sn_get_id() to get ID 
associated with user_if instance.

DUT

Set hdl_path() to map eVC 
to user_if instances
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connect the e env and with its corresponding SVTB group or 

subenv.  Instantiate each interface once for each object it will 

correspond with.  If the number of objects is unknown at 

compile time, create one interface that communicates with all, 

depending on a unique identifier.  For example, a user may 

want to call the write() method of an eVC from SystemVerilog. 

If there are multiple instances of that eVC in the verification 

environment, and they are contained in a list in e: 

1 // p_wr = packet write 
2 method_type p_wr(data: enet_packet); 
3  
4 unit enet_env { 
5   p_wr: in method_port of p_wr is instance; 
6   keep bind(p_wr, external); 
7   keep p_wr.hdl_path() == “write”; 
8  
9    p_wr(data: enet_packet) @clk$ is {}; 
10 }; 
11  
12 unit my_toplevel_env { 
13    enet_env_list: list of enet_env is instance; 
14 }; 

FIGURE 9: E CODE - ACCESSING A LIST OF EVCS 

The associated SystemVerilog interface would look something 

like: 

1 interface enet_env_sv2e_if (); 
2  
3   // If only one instance of eVC exists id 
4   // is determined by call to $sn_get_id(). 
5   task write_unique(sn_enet_packet packet); 
6     specman.write ($sn_get_id(), packet); 
7   endtask: write_unique 
8   
9   // If multiple instances exist, select 
10   // appropriate instance with id field. 
11   task write(int id, sn_enet_packet packet); 
12     specman.write(id, packet); 
13   endtask: write 
14  
15 endinterface: enet_env_if 

FIGURE 10: SV INTERFACE FOR E CODE ACCESS 

Now, when calling the write method from instance 3 (for 

example) of the enet_env, users can say 

1 my_enet_env_sv2e_if.write(3, my_pkt); 

FIGURE 11: CALLING AN E METHOD FROM SV 

3.2 DATA CONVERSION ADAPTERS 

By default, Specman can generate adapter classes (written to 

the specman.svh file) that make it possible to transform e 

structs and units to SystemVerilog classes. These pre-defined 

classes have some limitations: 

 They are not derived from any base class
1
 

 Random constraints and coverage are not included 

 Methods are not implemented 

If the converted classes are not derived from VMM base 

classes, they are significantly less useful in a VMM-derived 

environment. When classes are derived from (for example) 

vmm_data, they can be used by other components in the 

SystemVerilog testbench, such as a scenario feeding a 

vmm_channel. 

There are two ways to work around the limitations described 

above. The first mechanism is to create a user-defined adapter 

to convert objects from SystemVerilog to their e-based 

equivalent. This approach is the only way to convert a class 

defined in SystemVerilog to e. Instructions on creating an 

adapter can be found in the e-language documentation [2].  If a 

data structure exists in e and needs to be used in 

“SystemVerilog, an alternate approach can be used. This 

approach involves post-processing the specman.svh file 

dumped by Specman when generating a stubs file to force the 

class to be extended from the desired base object (and to use 

any desired shorthand macros). 

3.2.1 MODIFYING THE STUBS FILE 
Maintaining class structures and adapters across multiple 

languages can be a time consuming and error-prone process. 

An automated mapping process significantly reduces 

maintenance and debug effort. Automating the process of 

converting e data structures to SystemVerilog can be 

accomplished using a combination of two techniques. First, the 

sv_adapter_unit can be modified to change the way data 

structures are named and dumped to the specman.svh file. 

Second, the specman.svh file itself can be modified via a post-

processing script to add desired characteristics such as: 

 User-defined base class 

 Support for VMM shorthand macros 

 Randomization of data members 

Once these modifications have taken place, users can either 

take advantage of the generated class directly or create a 

derived object that includes additional capabilities such as 

customized vmm_data functionality and random constraints.  

                                                                        
1
 Unless Specman is used in conjunction with the Cadence OIG 

tool, in which case, classes are derived from OVM base classes. 
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As an example, here is an e struct that would be useful to work 

with in SystemVerilog. 

1 // A simple data structure modeling a read or  
2 // write command, address, and data. 
3 struct vlab_simple_data_s like  
4                         any_sequence_item { 
5     data_type: simple_data_t; 
6      
7     %addr: uint(bits:32); 
8     %data: list of byte; 
9  
10     keep soft data.size() in [1..5]; 
11  
12     short_print() : string is { 
13         // ... 
14     }; 
15  
16     do_print() is only { 
17         // ... 
18     }; 
19  
20 }; 

FIGURE 12: VLAB_SIMPLE_DATA_S 

When this data structure is used as a parameter to a method 

port, Specman will automatically create an equivalent 

SystemVerilog class in the stubs file. Struct data members will 

be part of the converted class definition. Methods, constraints, 

and functional coverage statements will not be converted. 

Before modification, the specman.svh file will look similar to 

the following. Code that is not relevant to the conversion has 

not been shown. Also note the accessor methods created 

during the stubs generation process. 

1 /************************* 
2 package specman_types 
3 *************************/ 
4 package specman_types; 
5  
6 /////////////////////////////////////// 
7 //  Forward Declarations             // 
8 /////////////////////////////////////// 
9  
10 typedef class sn_vlab_simple_data_s; 
11  
12 /////////////////////////////////////// 
13 //    Type Definitions               // 
14 /////////////////////////////////////// 
15  
16 // class definition for specman struct  
17 // vlab_simple_data_s for use in method port  
18 // with dynamic parameters' size 
19 class sn_vlab_simple_data_s; 
20  
21    /////////////////////////////////////// 
22    // Public fields 
23    /////////////////////////////////////// 
24    int unsigned addr; 
25    byte unsigned data[]; 
26  
27    /////////////////////////////////////// 
28    // Field access methods 
29    /////////////////////////////////////// 
30    extern function int get_data_size(); 
31    extern function void set_data_size(int   

      new_size, bit keep_old_values); 
32    extern function byte unsigned  

      get_data_elem(int index); 
33    extern function void set_data_elem(int     

      index, input byte unsigned val); 
34    // ... 
35  
36 endclass : sn_vlab_simple_data_s 

FIGURE 13: SPECMAN.SVH BEFORE PROCESSING 

Look at line 19 above.  The e struct vlab_simple_data_s has 

been converted to a new SystemVerilog class 

sn_vlab_simple_data_s.  Unlike the original e struct, the data 

members of this new class are not randomized.  

After post processing, the class sn_vlab_simple_data_s has 

some additional capabilities.  
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1 /************************* 
2  * package specman_types 
3  *************************/ 
4 package specman_types; 
5  
6 import vmm_std_lib::*; 
7  
8 ////////////////////////////////////// 
9 // Forward Declarations             // 
10 ////////////////////////////////////// 
11  
12 typedef class sn_vlab_simple_data_s; 
13  
14 ////////////////////////////////////// 
15 // Type Definitions                 // 
16 ////////////////////////////////////// 
17  
18 // class definition for specman struct 
19 // vlab_simple_data_s for use in method port  
20 // with dynamic parameters' size 
21 class sn_vlab_simple_data_s extends vmm_data; 
22    `vmm_typename(sn_vlab_simple_data_s) 
23  
24    /////////////////////////////////////// 
25    // Public fields 
26    /////////////////////////////////////// 
27    int unsigned addr; 
28    byte unsigned data[]; 
29     
30    /////////////////////////////////////// 
31    // Field access methods 
32    /////////////////////////////////////// 
33    extern function int get_data_size(); 
34    extern function void set_data_size(int  
35       new_size,bit keep_old_values); 
36    extern function byte unsigned  
37       get_data_elem(int index); 
38    extern function void set_data_elem(int  
39       index,input byte unsigned val); 
40     
41 // BEGIN POST PROCESSING BY svh2vmm.py  
42 // SHORTHAND MACROS   

`vmm_data_member_begin(sn_vlab_simple_data_s) 
43    `vmm_data_member_scalar(addr, DO_ALL); 
44    `vmm_data_member_scalar_array(data, DO_ALL); 
45 `vmm_data_member_end(sn_vlab_simple_data_s) 
46 // END POST PROCESSING BY svh2vmm.py 
47 // SHORTHAND MACROS 
48  
49 endclass : sn_vlab_simple_data_s 

FIGURE 14: POST-PROCESSED STUBS FILE 

A closer look reveals that four important modifications have 

been made to the stubs file. First, on line 6, the VMM standard 

library package has been imported into the specman_types 

package. This allows access to all relevant VMM functionality 

from within the stubs file. 

Second, on line 21 sn_vlab_simple_data_s now extends from 

vmm_data.  This will allow the class to be used as a data item 

passed via channel, and provides access to copy(), compare(), 

pack(), unpack(), and other relevant VMM data functions using 

their default implementations (subject to the third and fourth 

additions described next). 

Third, the call to `vmm_typename(...) has been included on 

line 22. And finally, the shorthand macros wrapping each of the 

member variables have been added on lines 41 through 47.  

If users need to add random constraints, custom functions, or 

customized implementation of built-in VMM data functions 

they will need to extend from this data item and create a new 

item to be passed throughout the SystemVerilog testbench. 

Certain characteristics of the dumped SystemVerilog class can 

be controlled from Specman itself using the reflection API and a 

customized version of the sv_adapter_unit. This topic is 

beyond the scope of this paper. However, as an introduction, 

the addr field of vlab_simple_data_s can be forced to be 

random in the stubs file via the following code. 

1 unit vlab_simple_data_adapter_unit like   
2    sv_adapter_unit { 
3  
4    // Output vlab_simple_data_s as a class  
5    // instead of a struct (the default). 
6     convert_struct_to_class(cur_struct:  
7        rf_struct) : bool is { 
8         return(TRUE); 
9     }; // convert_struct_... 
10  
11     // Randomize the "addr" field of  
12     // "vlab_simple_data_s" 
13     randomize_field (cur_field : rf_field) :  
14        bool is {  
15        var cur_struct : rf_struct =  
16           cur_field.get_declaring_struct();  
17        if (cur_struct.get_name() ==  
18           "vlab_simple_data_s" and 
19            cur_field.get_name() == "addr" ) {  
20               result = TRUE;  
21         };  
22     }; 
23  
24 }; 

FIGURE 15: CONFIGURE 'RAND' KEYWORD USING SV_ADAPTER_UNIT 

The vlab_simple_data_adapter_unit should be instantiated 

somewhere within the environment as shown. 

1 extend sys { 
2   data_adapter: vlab_simple_data_adapter_unit  
3      is instance; 
4  
5 }; 

FIGURE 16: INSTANTIATE ADAPTER UNIT UNDER SYS 

The stubs file will now contain the "rand" keyword before the 

addr field in the sn_vlab_simple_data_s class definition. 
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There are a few drawbacks to this approach. First, modifying 

the stubs file is not recommended by Cadence as its contents 

are not guaranteed to remain consistent between versions of 

Specman. However, it is believed the changes suggested are to 

areas of the file unlikely to change significantly, if at all, 

between Specman versions. 

Second, modifying the stubs file requires an additional step in 

the compilation flow. After the stubs file is generated, 

modifications must be made before the compile continues. At 

most, a few additional lines of code were added to the example 

Makefile to support post-processing. If this level of 

modification to the build process is not possible, modifying the 

stubs file may not be a practical approach. 

Third, if more than one base class is needed the scripting effort 

involved could become a gating factor. The examples in this 

section assume that each class that must be instrumented 

should be based on vmm_data. If that is not going to be the 

case, additional logic would need to be scripted to determine 

which classes should be based on vmm_data, and which should 

be based on others (such as vmm_e_xactor, which will be 

discussed in section 4.1). 

Finally, depending on the complexity of the data structures 

involved, it could be difficult to make the necessary additions to 

the stubs file without a more advanced SystemVerilog parsing 

capability. This could be especially true in the case where a data 

structure is represented by a hierarchical set of objects.  

3.2.2 CREATING THE USER-DEFINED ADAPTER 
Another approach possible when using eVCs in a VMM 

environment is to hand-code adapter classes. Classes that 

represent data objects in e (for example, derived from 

any_sequence_item) should be derived from vmm_data on the 

SystemVerilog side.  When creating the adapter class, users 

must determine whether or not they want to randomize the 

resulting data object in SystemVerilog or only randomize the 

object in e.  

4 BASIC SOLUTION 
It is possible to define a robust, fully-featured interconnect 

between e and SystemVerilog/VMM
2
 with a significant amount 

of manual coding effort.  Since one of the goals of this paper is 

to avoid as much manual effort as possible, a scaled down 

version of the interface will be defined.  The framework 

presented here will allow users to: 

                                                                        
2
 Cadence’s OIG testbench generator can facilitate e to SV/OVM 

when run on the IUS simulator. 

 Start and configure eVCs from the primary 

SystemVerilog/VMM testbench 

 Start and stop eVCs using a vmm_xactor-based 

interface  

 Pass arbitrary configuration from SV to e via 

vmm_opts 

 Call arbitrary e methods (with no parameters or 

return values)
3
 from SystemVerilog 

 Easily pass data between e and SV, as long as the data 

structure was originally defined in e 

 Pass data between e and SV with manual effort 

assuming data structure was originally defined in SV 

The steps to accomplish these goals are described below. 

4.1 THE GENERAL FLOW 

Figure 17 demonstrates the high level architecture of the 

infrastructure required to communicate between e and 

SystemVerilog. 

 

FIGURE 17: MULTI-LANGUAGE INFRASTRUCTURE 

The basic execution flow for our e-SV framework is as follows: 

1. VMM executes all phases up to and including build. 

2. All randomized configuration relevant to the e 

component hierarchy will be generated in 

SystemVerilog. 

3. During the build phase, a VMM-based wrapper for 

each expected e object will be built.  Objects will be 

derived from a newly proposed class: vmm_e_xactor.  

Each of these objects will register itself with a central 

registry maintained in SystemVerilog 

                                                                        
3
 For this to work, parameters must be passed via the Drop Box 

described in section 4.5. 
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(vmm_e_xactor_registry). During registration, the 

following information will be passed: 

a. Pointer to the object 

b. Logical name (string) of the object 

c. Type of object (driver, monitor, generator, 

group, etc). Currently, the type will be used 

for debugging purposes only, but could be 

used in the future for other purposes. 

4. At the end of the build phase, call the “test” 

command in e.  

5. e components are instantiated and generated using 

constraints from SystemVerilog and the vmm_opts 

integration. 

6. During the post_generate() step, e components add 

themselves to the registry of e components on the 

SystemVerilog side. Two important pieces of 

information are registered: 

a. Pointer to the e object (as a string e object 

name, such as my_inst-@3) 

b. Logical name of the component as a string. 

For example, sys.my_vlab_evc.bfm. 

Though the logical name could be passed 

back relative to SystemVerilog if that can be 

determined either during generation or by 

the user who creates the e wrapper to 

begin with. 

7. When each e component is added to the registry, the 

registry looks for a matching SystemVerilog 

component. If none is found, an error is issued. 

Additional checking could be added at the end of this 

step to flag an error if a SystemVerilog component 

has no matching e component.
 
 

Wrappers between VMM/SV and e can be created to deal with 

the following types of interfaces: 

 vmm_xactor::start_xactor and 

vmm_xactor::stop_xactor() 

 sequence/scenario-related methods 

 TLM methods 

 user-defined methods
4
 

On the SystemVerilog side, users can create wrappers deriving 

from the class vmm_e_xactor. On the e side, users can 

instrument their eVCs by extension via a set of macros: 

 enable_vmm_xactor_integration 

 enable_vmm_scenario_integration5 
 enable_vmm_tlm_integration5 

                                                                        
4

 Only start_xactor() and stop_xactor() have been 
implemented in example code. 

For example: 

1 extend vlab_simple_seq_driver_u { 
2     enable_vmm_xactor_integration; 
3 }; 

Given an eVC and a VMM testbench, the following files will 

need to be created by the user: 

 myevc_config.e 

o Contains extensions to enable interaction 

with the VMM base classes, plus hooks to 

pull information on unit configuration from 

SystemVerilog during randomization. 

 myevc_wrapper.sv  

o Parameterized with SV-e adapter based on 

vmm_data 

o User wrapper based on vmm_e_xactor base 

class. Users must implement custom 

methods as needed to deal with 

SystemVerilog-e integration issues. 

 myevc_data_type.sv   

o Derived from vmm_data 

o Data items that users want to pass between 

e and SV should be defined.  Add fields to 

control which random variables should be 

used in e and which should be ignored.  

4.2 CONFIGURATION WITH VMM_OPTS 

vmm_opts is a VMM utility class that allows users to pass 

configuration values from the simulation command line or 

testbench source code to other portions of the environment 

[3].  By wrapping this class appropriately, it can be used to 

easily pass basic types (i.e. all types except user-defined types) 

of configuration data from SystemVerilog to e. 

There are three ways to save configuration values to the 

vmm_opts database: call to the set_* API, from an external 

options file, or from the simulation command line.  [3] Each 

value stored in the configuration database can be referenced 

via a unique string id. For example, the number of agents to be 

instantiated within an eVC could be randomized and stored in 

the VMM configuration database. 

                                                                                                                    
5
 Scenario and TLM integration are proposed. 
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1 class vlab_tb_top extends vmm_group; 
2  
3   rand logic [3:0] num_agents; 
4  
5   constraint e_agent_count { 
6       num_agents < 5; 
7       num_agents > 1; 
8   }; 
9   
10   // ... 
11  
12   virtual function void build_ph(); 
13       this.randomize(); 
14       vmm_opts::set_int( 
15         "num_agents", num_agents); 
16   endfunction: build_ph 
17   
18   //... 
19 endclass: vlab_tb_top 

FIGURE 18: POPULATING VMM_OPTS DATABASE FROM SV 

With the proper integration between e and SystemVerilog, the 

num_agents parameter can be read out during the generation 

phase of an e component as shown below. 

1 extend vlab_simple_env_u { 
2   // ... 
3  
4   // vmm_opts option processing 
5   opts2e: vmm_opts2e_u; 
6    
7   // Instantiate a simple agent. 
8   keep simple_agent_list.size() ==  
9             opts2e.vmm_get_int$("num_agents"); 
10  
11 }; 

FIGURE 19: RETRIEVING VMM_OPTS VALUES FROM E 

Built-in types can easily be passed across the language 

boundary using this approach. User-defined types do not work 

well without user customization as the vmm_opts API stores 

these objects as vmm_object types.   

The vmm_opts integration is effectively a special case of the 

drop box approach described in section 4.5. 

 

FIGURE 20: VMM_OPTS -> E HOOKUP 

As shown in Figure 20, a SystemVerilog interface, 

vmm_opts2e_if, is created to facilitate calls from e 

components. A call to each of the functions of vmm_opts is 

made from an equivalently named function in the interface. 

The interface is instantiated once, and is paired with a single 

instance of an e unit called vmm_opts2e_u. vmm_opts2e_u 

contains method ports corresponding to each of the wrapper 

functions in vmm_opts2e_if.   

Any e component with a pointer to the vmm_opts2e_u 

instance can query the configuration registry in SystemVerilog. 

In order to use the configuration registry during generation, any 

required values must be written to the registry before or during 

the build phase build_ph in the VMM. 

4.3 REGISTRY 

e method calls must be associated with a specific hdl_path(). 

If there are multiple eVC instances, a custom ID must be used 

to call the methods in each one. Maintaining a mapping of IDs 

to instances can be tricky as the numbers and types of eVCs and 

instances scale. Automated code generation of the mapping 

could help alleviate the issue, as could adding the ability to map 

e method calls to SVTB dynamic calls to Specman. This type of 

support does not currently exist between Specman and VCS. 

Therefore, an alternate strategy is proposed. 

A registry can be used to facilitate communication between e 

and SystemVerilog. To simplify coding and maintenance, our 

registry relies on two unique aspects of the e language to 

simplify mapping. Usually, pointers to objects in another 

language cannot be stored. However, in e it is possible to save a 

string that serves as a pointer to a unique instance of an object. 

Pointers are strings in the form of my_vlab_class-@3 which 

means the @3 instance of my_vlab_class. Also, it is possible in 

vmm_opts
global instance

vmm_opts2e_u

SV Modules

vmm_opts2e_if specman

SystemVerilog TB e

method-port

Wrapped 
vmm_opts:;* API calls

DUT
Wrapped vmm_opts:;* 

API calls



  Integrating e Verification IP in a VMM Testbench 
        

  13 of 16 

Specman to call commands using the specman() method. For 

example: 

1 // object_from_sv has been converted from SV 
2 // to e by the Specman adapter and  
3 // placed in the relevant drop box. 
4 specman( 

  “my_class-@3.send_data(object_from_sv)”); 

FIGURE 21: USING 'SPECMAN()' TO EXECUTE ARBITRARY E CODE 

As described in section 4.1 above, e objects that must be able 

to communicate with SystemVerilog will register with the 

central SystemVerilog registry during generation. During the 

registration process, the string reference to the e object will be 

stored in the registry. The enable_vmm_xactor_integration 

macro defined below automatically registers instrumented 

eVCs. 

1 define  
2   <enable_vmm_xactor_integration'struct_member>  
3   "enable_vmm_xactor_integration" as { 
4  
5   opts2e: vmm_opts2e_u; 
6   keep opts2e == sys.vmm_opts2e;  
7  
8   xactor_registry: vmm_e_xactor_registry_u; 
9     keep xactor_registry == 
10          sys.vmm_e_xactor_registry; 
11  
12   // Functionality to start and stop this 
13   // eVC. Must extend and implement  
14   // this method. 
15   start_e_xactor() is empty; 
16   stop_e_xactor() is empty; 
17  
18   // ... 
19  
20   post_generate() is also { 
21     var return_val: bit; 
22     // Add this instance to the SystemVerilog  
23     // object registry. 
24      vmm_e_xactor_registry.\ 
25        register_vmm_e_xactor$(       
26        short_name_path(), appendf("%s", me)); 
27   }; 
28 }; 

FIGURE 22: ENABLE_VMM_XACTOR_INTEGRATION MACRO 

DEFINITION 

The registry itself has two key functions. 

1 function bit register_sv_xactor( 
          string name, vmm_e_xactor x); 

2 function void register_vmm_e_xactor( 
          string name, string var_name); 

FIGURE 23: VMM_XACTOR INTEGRATION FUNCTIONS 

 

FIGURE 24: REGISTRY API 

When registering the e component and its wrapper, the current 

mechanism to ensure they are matched in the registry is to use 

the same name for each transactor instance. One way to deal 

with names is to use the short_name_path() of the e unit 

being registered, and to use the same name for the VMM 

transactor wrapper object as well. 

4.4 SYNCHRONIZATION 

vmm_e_xactor objects will be stopped and started via the 

regular VMM start_xactor() and stop_xactor() methods.  

This will provide a first level of synchronization between the 

two language domains. eVCs will be “stopped” by default, and 

must be activated initially via the start_xactor() command. 

There are a variety of ways users could modify e components to 

cause them to start and stop as desired.  One example involves 

starting and stopping a sequence driver. 

Sequence drivers in e are responsible for sending traffic 

generated by sequences to the BFM.  Each sequence driver has 

a default sequence that runs (or not) based on some user-

defined scheme. Usually this scheme involves setting the count 

in the default sequence to 0 telling it not to generate any new 

sequences. To accomplish something more complex, users 

must come up with a strategy on their own. VMM transactors 

based on vmm_xactor, on the other hand, have a convenient 

mechanism for controlling when traffic generators should start 

or stop – the vmm_xactor::start_xactor() and 

vmm_xactor::stop_xactor() functions. When using the VMM 

together with e, the VMM scheme can be used to our 

advantage to easily control when sequence drivers are 

activated to send traffic to the driver, or when the BFM itself 

should even be requesting new transactions from the driver in 

the first place. This mechanism could be used with just about 

any e environment component, enabling the component to be 
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turned off or on as needed.  One important point to mention is 

that sequence drivers should not be disabled if they are 

expected to receive requests from virtual sequences in other 

parts of the testbench. 

Using the registry described in section 4.3 and the 

vmm_e_xactor base class, any call to 

vmm_e_xactor::start_xactor() or stop_xactor() will call 

the start_e_xactor() and stop_e_xactor() methods in the 

correspondingly instrumented e units.  Users must implement 

start_e_xactor() and stop_e_xactor() in any units that will 

take advantage of this feature.  In this example, the approach 

used for starting and stopping the sequence driver is first to set 

a flag letting the driver know whether it should plan to start or 

stop at the next opportunity. Instead of stopping the sequence 

driver itself, we will stop the BFM. A more complex scheme 

could be used instead depending on the requirements of the 

interface. 

1 extend vlab_simple_seq_driver_u { 
2      
3   // Keep a pointer to the BFM so we  
4   // can turn it on and off. It will no longer 
5   // pull transactions from the driver. 
6   !bfm: vlab_simple_bfm_u; 
7    
8   start_e_xactor() is also { 
9     bfm.is_enabled = TRUE; 
10   }; 
11  
12   stop_e_xactor() is also { 
13     bfm.is_enabled = FALSE; 
14   }; 
15  
16 }; 

FIGURE 25: START/STOP E XACTOR IMPLEMENTATION 

The BFM has been coded to respond on per-transaction 

boundaries to the state of the is_enabled flag. 

1 // Pull item from driver, process it, then  
2 // inform using item_done  
3 extend vlab_simple_bfm_u { 
4   driver: vlab_simple_seq_driver_u; 
5  
6   // Flag to be set by vmm_e_xactor start/stop 
7   // is_enabled: bool; 
8   keep soft is_enabled == FALSE; 
9  
10   execute_items() @clk$ is {  
11     var seq_item: vlab_simple_data_s;  
12     while TRUE {  
13  
14       // Don't start executing items unless  
15       // this driver is enabled. 
16       wait true(is_enabled); 
17  
18       seq_item = driver.get_next_item();  
19       drive_simple_data(seq_item);  
20  
21       emit driver.item_done;  
22     };  
23   };  
24   
25   run() is also {  
26     start execute_items();  
27   }; 
28  
29 }; 

FIGURE 26: ADDING XACTOR CAPABILITIES TO E DRIVER 

As can be seen on line 16, the driver will only attempt to get 

another item if is_enabled is TRUE. It will not check 

is_enabled again until after it has completed the current 

transaction. 

4.5 DROP BOX 

The registry described in section 4.3 provides a mechanism for 

dealing with many instances of an object containing methods 

users would like to call. However, each time a method is added 

to the object it must also be added to a SystemVerilog interface 

and a method port must be created in e.  The drop box provides 

a means to allow new e methods to be created and called 

without the need for a new interface or method port to be 

created.   
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FIGURE 27: SV TO E DROP BOX 

As shown in Figure 27, a SystemVerilog method places data in 

the drop box by means of an intermediary interface instance. It 

then calls the appropriate method in e via the $sn/specman() 

commands.  The e method (in this case, send_data()) 

immediately gets the relevant data item from the drop box. The 

call to get_data() must take place before any time is 

consumed in the method to prevent other methods using the 

drop box from overwriting the data item. A new drop box must 

be created for each data type to be passed between 

SystemVerilog and e.  

It is also possible to use the drop box to send data from e to 

SystemVerilog. 

 

FIGURE 28: E TO SV DROP BOX 

Figure 28 shows the steps required to call a generic method in 

SystemVerilog from e using the drop box to pass a data item.  In 

order for this approach to work users must implement a lookup 

table in SystemVerilog mapping strings to actual method calls. 

One way to accomplish this task would be to take advantage of 

the VMM Callback mechanism. Users could add callbacks that 

followed the following procedure: 

1. Check to see if current string matches 

2. If yes, call method 

If the details of the interface between e and SystemVerilog are 

known in advance and little change is expected, the more 

straightforward approach is to create relevant method ports 

directly to pass required data via method parameters. 

5 FUTURE WORK 
Once the basics of the SystemVerilog interface have been 

established, users will immediately hit a number of issues 

critical to building a successful testbench. The most pressing of 

these will be in the areas of randomization, coverage collection, 

and stimulus generation.  

5.1 RANDOMIZATION AND COVERAGE 

When using eVCs in a SystemVerilog testbench, it is natural to 

want to control randomization and collection of functional 

coverage as much as possible in the testbench’s native 

language (SystemVerilog).  However, since it is not possible to 

pass actual data structures across the language interface, but 

instead only copies, several limitations quickly become evident. 

How many constraints from the original e struct need to be 

rewritten to make randomization effective in SystemVerilog? 

The same question applies to Functional Coverage as well.  

What strategy should be used to communicate which fields 

have already been randomized in SystemVerilog, and which 

should still be randomized in e? 

If randomization in SystemVerilog is desired, classes could be 

constructed with control fields letting Specman know which 

fields were randomized by e, and which were randomized 

already in SystemVerilog.  

1 class packet extends vmm_data; 
2    rand reg[47:0] dst_addr; 
3    // If 1, randomize dst_addr in e. If 0, it  
4    // has already been set in SystemVerilog 
5    bit randomize_dst_addr; 
6  
7    constraint dst_addr { 
8       ... 
9    }; 
10 endclass:packet 

FIGURE 29: RANDOMIZATION BETWEEN E AND SV 
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5.2 STIMULUS 

One of the key capabilities in both the VMM and eRM is the 

ability to generate stimulus using sequences (eRM) and 

scenarios (VMM). At a high level, the two methodologies 

behave similarly. At a lower level, there are differences that 

come into play that affect the way the libraries interact. The 

main differences come in the usage model – push (VMM) vs. 

pull (eRM). See [4] for more detailed description of the issue. 

There are a number of possible use models that will need to be 

examined in order to identify a complete solution for 

integrating eVCs into a VMM environment, such as: 

 Multi-Stream Scenarios (MSS) calling Sequences 

 MSS executing sequence items 

 Scenario generators passing data through a channel 

to a sequencer 

 Adding new “sequences” that are actually written as 

SystemVerilog scenarios 

Each of the above use cases is potentially valuable. However, 

several of them require a significant amount of manual coding 

and maintenance to enable them to scale properly in a large 

verification environment without some sort of automated 

solution.  A tradeoff would likely be made to sacrifice some 

flexibility and the ability to write all future stimuli in 

SystemVerilog in order to make the final solution easier to 

maintain.   

Often engineers need to take advantage of verification IP 

written in languages and methodologies other than the primary 

ones used in their testbench.  Users with eVC libraries can take 

advantage of these existing components within a 

SystemVerilog/VMM framework by following the suggestions 

outlined in this paper.  Specifically, techniques  used to deal 

with method ports, a description of the process required to 

bring up the e and SystemVerilog simulations in the correct 

order, and the methodology to be used to deal with passing 

data across several permutations of standard VMM interfaces 

have been addressed.  
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