

Integrating e Verification IP
in a VMM Testbench

JL Gray
Verilab

jl.gray@verilab.com

Adiel Khan
Synopsys

adiel@synopsys.com

30 March 2010

ABSTRACT

Modern testbenches often consist of components drawn from multiple languages. In many of these cases, multi-language and

multi-methodology interaction is not well defined. In this paper, we will demonstrate the use of e verification components

(eVCs) in a SystemVerilog/VMM testbench. Several complex issues arise when using SystemVerilog as the “primary” language.

Initial simulator engine synchronization, random generation ordering, timing problems caused by program blocks, and

methodology synchronization between the VMM and eRM will all be discussed.

Copyright © 2010 Verilab, Inc. All rights reserved.

mailto:jl.gray@verilab.com
mailto:adiel@synopsys.com

 Integrating e Verification IP in a VMM Testbench

 2 of 16

Contents

1 Overview ... 3

1.1 Background .. 3

1.2 Terminology ... 4

1.3 Other Useful Terminology ... 4

2 Challenges ... 4

2.1 Method Ports ... 4

2.2 Program Blocks .. 5

3 Communication ... 5

3.1 Method Ports ... 5

3.2 Data Conversion Adapters ... 7

3.2.1 Modifying the stubs file ... 7

3.2.2 Creating the user-defined adapter ... 10

4 Basic Solution .. 10

4.1 The General Flow ... 10

4.2 Configuration with vmm_opts .. 11

4.3 Registry .. 12

4.4 Synchronization ... 13

4.5 Drop Box .. 14

5 Future Work .. 15

5.1 Randomization and Coverage .. 15

5.2 Stimulus ... 16

6 Works Cited ... 16

 Integrating e Verification IP in a VMM Testbench

 3 of 16

1 OVERVIEW
Modern testbenches often consist of components drawn from

multiple languages. SystemVerilog, e, OpenVera, SystemC, C,

C++, Perl, and Python can be found in verification environments

across the industry. Additionally, many languages have their

own unique methodologies (whether open source, home

grown, or vendor specific). What happens when users want to

take advantage of verification IP, but the available choices were

not written in the primary testbench language used for a

particular project?

In many of these cases, multi-language and multi-methodology

interaction is not well defined. This is certainly the case where

e verification components (eVCs) are used in a

SystemVerilog/VMM-based testbench. e has been around for

over 14 years. Companies throughout the industry have

libraries of eVCs they would like to reuse in new verification

environments written in SystemVerilog and the VMM.

In this paper, we will demonstrate the use of e verification

components (eVCs) in a SystemVerilog/VMM testbench. After

defining a terminology mapping between the VMM and eRM,

the paper will be divided into four main topics.

First, challenges to interoperability between the SV/VMM

testbench and e will be discussed. These challenges include

compatibility problems caused by use of program blocks in the

VMM, and issues with method ports in different versions of

Specman.

Next, we will review data communications strategies using

method ports and user-defined adapters. Part of this discussion

will center on identifying how to minimize the amount of

adapter code (including SystemVerilog modules and interfaces)

required to instantiate e code in a SystemVerilog testbench

while maximizing configurability. We will cover a novel

mechanism for customizing the specman.svh auto-generated

header file to add custom VMM extensions to generated

wrapper classes.

After describing the framework upon which our interoperability

solution will be built, we will describe the basic proposed data

flow for communicating between e and SV. We will discuss how

to control component instantiation in e via configuration

generated in SystemVerilog. We will then review the concept of

a component registry, object wrappers, and synchronization.

Finally, we will discuss several possible communication paths

between e and VMM/SV. The following paths will be addressed

with an eye towards future research:

 vmm_channel to e sequencer

 vmm_ms_scenario to e sequencer

 Straight API calls into eVCs

We will also discuss synchronizing activities in e with VMM

phases (both explicit and implicit).

FIGURE 1: EXAMPLE TESTBENCH

1.1 BACKGROUND

It is expected that readers of this document will be familiar with

both e and SystemVerilog, and will have knowledge regarding

general integration issues that can arise when communicating

across the e-SV language boundary. Experienced e-language

users will be familiar with techniques used to integrate

SystemVerilog and Verilog components in testbenches where

Specman is the master. When using SystemVerilog as the

master, there are some key differences that must be taken into

account in areas such as:

 Simulation initialization

 Environment randomization

 Testbench setup (Program block vs. module-based

testbenches)

 The need to access methods in e that are part of

dynamic SVTB components (as opposed to program

blocks or modules)

In addition to basic language issues there are methodology

issues to deal with, such as how to deal with:

 Push vs. pull-mode stimulus

 Testbench phase synchronization

 Coverage collection

 Data randomization strategies

One of the driving goals of this paper is to describe a process

that can be used to integrate the SystemVerilog and e

SystemVerilog/VMM Testbench

DUT

PCI
XGMII
eVC

RAL

HOST
MSSG

scoreboard
SMBus

eVC

e Verification
Components

 Integrating e Verification IP in a VMM Testbench

 4 of 16

testbenches from a basic language perspective in the absence

of significant tool automation support. Specifically, an attempt

has been made to minimize the amount of glue logic that must

be written and maintained. In some cases, that may reduce the

functionality available across the interface. Another goal is that,

to simplify the manual maintenance involved, extensions to

testbench components will be written in the most convenient

(usually the native) language. Methodology issues involving

passing configuration between languages and using appropriate

base classes for data items will be discussed. Stimulus,

testbench phase synchronization, coverage collection, and

randomization strategies will be reviewed with an eye towards

future development.

1.2 TERMINOLOGY

The e Reuse Methodology (eRM) and VMM use different

terminology when referring to similar testbench components.

The following map should help users familiar with one of these

methodologies.

TABLE 1: TERMINOLOGY MAPPING

e/eRM VMM Notes

Agent Subenv, Group

Bus Functional
Model (BFM)

Transactor,
Driver

Monitor Transactor,
Monitor

Sequencer,
Sequence Driver

Scenario
Generator,
Multi-Stream
Scenario
Generator

Env Group, Subenv (1)

Sequence Scenario, Multi-
Stream Scenario

e Verification
Component (eVC)

VMM Group (2)

Method Function

Time consuming
method (TCM)

Task

(1) The vmm_env class was intentionally omitted from the

table because an env in an e testbench does not

really map well to a vmm_env. vmm_env is a top-level

component and cannot be reused. The e env most

closely matches with vmm_group since the group can

be reused at any level of the hierarchy and is

implicitly phased. Implicit phasing aligns well with the

“infinity-minus generation” in e.

(2) While there is no direct correlation between the eRM

and VMM, the closest match is that an eVC is most

like the VMM group (i.e. both are self-contained

collections of verification components)

1.3 OTHER USEFUL TERMINOLOGY

Some documentation refers to the primary language as the

“master”, and the foreign methodology as the “slave”. For the

purpose of this document we will use the same terminology as

was used in the Accellera VIP Recommended Practices

document. [1]

2 CHALLENGES
Documentation on the interface between Specman and

SystemVerilog, including configuring Specman to run with VCS,

can be found by running the command cdnshelp. However,

there are some issues that should be addressed before getting

started.

2.1 METHOD PORTS

e-language code naturally runs through its “generate” phase

before SystemVerilog testbench code has a chance to activate.

Additionally, method ports are not bound until after generation

in all but very recent versions of Specman, preventing calls to

method ports from being used during random generation.

FIGURE 2: SPECMAN PHASES BEFORE VMM GEN_CFG()

 Integrating e Verification IP in a VMM Testbench

 5 of 16

FIGURE 3: UPDATED SPECMAN, PROGRAM BLOCK-BASED VMM

FIGURE 4: UPDATED SPECMAN, MODULE-BASED VMM

There are a couple of implications to this. In a testbench where

SystemVerilog is the master, it would be ideal to control such

factors as number of instance of eVCs, address ranges, etc,

from random variables created in SystemVerilog. However,

that information is not available during the generation phase

for the reasons described above. Users must either assume all

random configuration activity for eVCs will be controlled on the

Specman side, or they must dump relevant configuration

generated in SystemVerilog to an e-language file that can be

loaded in when Specman is restarted during the build phase.

In recent versions of Specman, method ports are bound before

the generation phase and calls to such methods can be used

during randomization on the e-language side. For the rest of

this document, we will assume access to a version of Specman

with the relevant method-port support.

2.2 PROGRAM BLOCKS

Another potential pitfall for VMM users is related to use of

program blocks to build testbenches. The VMM recommends

that all testbenches be instantiated within a program block.

However, Specman is optimized to work with testbenches

written without the use of program blocks. Because of this

mismatch, there could be unexpected timing differences

between eVCs wrapped with SystemVerilog instantiated within

a program block and e code effectively instantiated within a

module. The module instance would behave in the expected

fashion; the program block instance could have an extra clock

cycle of delay as events are passed across the e-SV boundary.

Program blocks also cause another complication. In versions of

Specman where it is possible to delay test generation, the call

to test must occur before the Reactive region. That means the

test command must be executed twice: once at the beginning

of the simulation, and once during the VMM build phase

executed from a program block. Testbenches written without

the use of program blocks will not suffer this limitation.

Additionally, as of March 2010 the VCS “separate compile” flow

relies on testbench components being encapsulated by a

program block. Writing a testbench without program blocks

will result in a loss of ability to use the “separate compile”

feature.

3 COMMUNICATION
The key to successfully integrating e and SystemVerilog

verification components is developing a mechanism for easily

passing data back and forth between the two languages. The

recommended approach is to use method ports in combination

with Specman-generated and user-generated adapters.

3.1 METHOD PORTS

The most efficient way to pass data between e and

SystemVerilog is to use method ports. A method port is

effectively a tunnel that allows users on either side of the

tunnel to call TCMs and non-TCMs. One limitation of method

ports is that they must be bound to a specific module instance

in SystemVerilog. That is, any SystemVerilog function or task a

user would like to call from e must exist in a module instance

corresponding to a SystemVerilog dynamic testbench

 Integrating e Verification IP in a VMM Testbench

 6 of 16

component that exists elsewhere, as shown in Figure 5. The

reverse is also true. If there are multiple instances of an e unit

that contain a function to be called from SystemVerilog, each

unit instance must have a unique hdl_path() as shown in

Figure 8. Alternately, it is possible to reference methods in

units based on a unique ID. Figure 6 demonstrates how a user

can access multiple eVC instances from a single SVTB object by

using the eVCs ID. Figure 7 shows a more complex scenario

where there are multiple SVTB and e objects that must

communicate with each other. The ID provides us with the

ability to create a registry that can be used to more easily map

between the e and SVTB domains.

FIGURE 5: SINGLE METHOD PORT COMMUNICATION

FIGURE 6: MULTIPLE METHOD PORT COMMUNICATION

FIGURE 7: REGISTRY REQUIRED TO ACCESS MULTIPLE SVTB OBJECTS

FIGURE 8: NO REGISTRY REQUIRED: 1:1 EVC TO USER_IF MAPPING

Table 2 summarizes the different types of connections possible

between e and SV, and whether a registry is required.

TABLE 2: REGISTRY AND ID REQUIREMENTS BASED ON E, SV

INTERFACE, AND SVTB INSTANCE COUNT

SVTB Interfaces e Registry ID

1 1 1 NO NO

1 1 Many NO YES

Many 1 1 YES NO

Many 1 Many YES YES

Many Many Many NO NO

The recommended solution for dealing with the situation

shown in Figure 7 is as follows. For each desired connection

between e and SV, create one SV interface to be used to

user_svtb_obj eVC

SV Modules

user_if specman

SystemVerilog TB e

Generated module

method-port

DUT

user_svtb_obj eVC

SV Modules

user_if specman

SystemVerilog TB e

method-port

eVC

method-port

eVC

method-port

eVC

method-port

DUT

Use ID to select
appropriate instanceGenerated module

user_svtb_obj eVC

SV Modules

user_if specman

SystemVerilog TB e

method-port

eVC

method-port

eVC

method-port

user_svtb_obj
user_svtb_obj

DUT

Use ID to select
appropriate instance

Registry required

Generated module

user_svtb_obj eVC

SV Modules

user_if specman

SystemVerilog TB e

method-port

eVC

method-port

eVC

method-port

user_svtb_obj
user_svtb_obj

No registry
required!

user_if
user_if

Use $sn_get_id() to get ID
associated with user_if instance.

DUT

Set hdl_path() to map eVC
to user_if instances

 Integrating e Verification IP in a VMM Testbench

 7 of 16

connect the e env and with its corresponding SVTB group or

subenv. Instantiate each interface once for each object it will

correspond with. If the number of objects is unknown at

compile time, create one interface that communicates with all,

depending on a unique identifier. For example, a user may

want to call the write() method of an eVC from SystemVerilog.

If there are multiple instances of that eVC in the verification

environment, and they are contained in a list in e:

1 // p_wr = packet write
2 method_type p_wr(data: enet_packet);
3
4 unit enet_env {
5 p_wr: in method_port of p_wr is instance;
6 keep bind(p_wr, external);
7 keep p_wr.hdl_path() == “write”;
8
9 p_wr(data: enet_packet) @clk$ is {};
10 };
11
12 unit my_toplevel_env {
13 enet_env_list: list of enet_env is instance;
14 };

FIGURE 9: E CODE - ACCESSING A LIST OF EVCS

The associated SystemVerilog interface would look something

like:

1 interface enet_env_sv2e_if ();
2
3 // If only one instance of eVC exists id
4 // is determined by call to $sn_get_id().
5 task write_unique(sn_enet_packet packet);
6 specman.write ($sn_get_id(), packet);
7 endtask: write_unique
8
9 // If multiple instances exist, select
10 // appropriate instance with id field.
11 task write(int id, sn_enet_packet packet);
12 specman.write(id, packet);
13 endtask: write
14
15 endinterface: enet_env_if

FIGURE 10: SV INTERFACE FOR E CODE ACCESS

Now, when calling the write method from instance 3 (for

example) of the enet_env, users can say

1 my_enet_env_sv2e_if.write(3, my_pkt);

FIGURE 11: CALLING AN E METHOD FROM SV

3.2 DATA CONVERSION ADAPTERS

By default, Specman can generate adapter classes (written to

the specman.svh file) that make it possible to transform e

structs and units to SystemVerilog classes. These pre-defined

classes have some limitations:

 They are not derived from any base class
1

 Random constraints and coverage are not included

 Methods are not implemented

If the converted classes are not derived from VMM base

classes, they are significantly less useful in a VMM-derived

environment. When classes are derived from (for example)

vmm_data, they can be used by other components in the

SystemVerilog testbench, such as a scenario feeding a

vmm_channel.

There are two ways to work around the limitations described

above. The first mechanism is to create a user-defined adapter

to convert objects from SystemVerilog to their e-based

equivalent. This approach is the only way to convert a class

defined in SystemVerilog to e. Instructions on creating an

adapter can be found in the e-language documentation [2]. If a

data structure exists in e and needs to be used in

“SystemVerilog, an alternate approach can be used. This

approach involves post-processing the specman.svh file

dumped by Specman when generating a stubs file to force the

class to be extended from the desired base object (and to use

any desired shorthand macros).

3.2.1 MODIFYING THE STUBS FILE
Maintaining class structures and adapters across multiple

languages can be a time consuming and error-prone process.

An automated mapping process significantly reduces

maintenance and debug effort. Automating the process of

converting e data structures to SystemVerilog can be

accomplished using a combination of two techniques. First, the

sv_adapter_unit can be modified to change the way data

structures are named and dumped to the specman.svh file.

Second, the specman.svh file itself can be modified via a post-

processing script to add desired characteristics such as:

 User-defined base class

 Support for VMM shorthand macros

 Randomization of data members

Once these modifications have taken place, users can either

take advantage of the generated class directly or create a

derived object that includes additional capabilities such as

customized vmm_data functionality and random constraints.

1
 Unless Specman is used in conjunction with the Cadence OIG

tool, in which case, classes are derived from OVM base classes.

 Integrating e Verification IP in a VMM Testbench

 8 of 16

As an example, here is an e struct that would be useful to work

with in SystemVerilog.

1 // A simple data structure modeling a read or
2 // write command, address, and data.
3 struct vlab_simple_data_s like
4 any_sequence_item {
5 data_type: simple_data_t;
6
7 %addr: uint(bits:32);
8 %data: list of byte;
9
10 keep soft data.size() in [1..5];
11
12 short_print() : string is {
13 // ...
14 };
15
16 do_print() is only {
17 // ...
18 };
19
20 };

FIGURE 12: VLAB_SIMPLE_DATA_S

When this data structure is used as a parameter to a method

port, Specman will automatically create an equivalent

SystemVerilog class in the stubs file. Struct data members will

be part of the converted class definition. Methods, constraints,

and functional coverage statements will not be converted.

Before modification, the specman.svh file will look similar to

the following. Code that is not relevant to the conversion has

not been shown. Also note the accessor methods created

during the stubs generation process.

1 /*************************
2 package specman_types
3 *************************/
4 package specman_types;
5
6 ///////////////////////////////////////
7 // Forward Declarations //
8 ///////////////////////////////////////
9
10 typedef class sn_vlab_simple_data_s;
11
12 ///////////////////////////////////////
13 // Type Definitions //
14 ///////////////////////////////////////
15
16 // class definition for specman struct
17 // vlab_simple_data_s for use in method port
18 // with dynamic parameters' size
19 class sn_vlab_simple_data_s;
20
21 ///////////////////////////////////////
22 // Public fields
23 ///////////////////////////////////////
24 int unsigned addr;
25 byte unsigned data[];
26
27 ///////////////////////////////////////
28 // Field access methods
29 ///////////////////////////////////////
30 extern function int get_data_size();
31 extern function void set_data_size(int

 new_size, bit keep_old_values);
32 extern function byte unsigned

 get_data_elem(int index);
33 extern function void set_data_elem(int

 index, input byte unsigned val);
34 // ...
35
36 endclass : sn_vlab_simple_data_s

FIGURE 13: SPECMAN.SVH BEFORE PROCESSING

Look at line 19 above. The e struct vlab_simple_data_s has

been converted to a new SystemVerilog class

sn_vlab_simple_data_s. Unlike the original e struct, the data

members of this new class are not randomized.

After post processing, the class sn_vlab_simple_data_s has

some additional capabilities.

 Integrating e Verification IP in a VMM Testbench

 9 of 16

1 /*************************
2 * package specman_types
3 *************************/
4 package specman_types;
5
6 import vmm_std_lib::*;
7
8 //////////////////////////////////////
9 // Forward Declarations //
10 //////////////////////////////////////
11
12 typedef class sn_vlab_simple_data_s;
13
14 //////////////////////////////////////
15 // Type Definitions //
16 //////////////////////////////////////
17
18 // class definition for specman struct
19 // vlab_simple_data_s for use in method port
20 // with dynamic parameters' size
21 class sn_vlab_simple_data_s extends vmm_data;
22 `vmm_typename(sn_vlab_simple_data_s)
23
24 ///////////////////////////////////////
25 // Public fields
26 ///////////////////////////////////////
27 int unsigned addr;
28 byte unsigned data[];
29
30 ///////////////////////////////////////
31 // Field access methods
32 ///////////////////////////////////////
33 extern function int get_data_size();
34 extern function void set_data_size(int
35 new_size,bit keep_old_values);
36 extern function byte unsigned
37 get_data_elem(int index);
38 extern function void set_data_elem(int
39 index,input byte unsigned val);
40
41 // BEGIN POST PROCESSING BY svh2vmm.py
42 // SHORTHAND MACROS

`vmm_data_member_begin(sn_vlab_simple_data_s)
43 `vmm_data_member_scalar(addr, DO_ALL);
44 `vmm_data_member_scalar_array(data, DO_ALL);
45 `vmm_data_member_end(sn_vlab_simple_data_s)
46 // END POST PROCESSING BY svh2vmm.py
47 // SHORTHAND MACROS
48
49 endclass : sn_vlab_simple_data_s

FIGURE 14: POST-PROCESSED STUBS FILE

A closer look reveals that four important modifications have

been made to the stubs file. First, on line 6, the VMM standard

library package has been imported into the specman_types

package. This allows access to all relevant VMM functionality

from within the stubs file.

Second, on line 21 sn_vlab_simple_data_s now extends from

vmm_data. This will allow the class to be used as a data item

passed via channel, and provides access to copy(), compare(),

pack(), unpack(), and other relevant VMM data functions using

their default implementations (subject to the third and fourth

additions described next).

Third, the call to `vmm_typename(...) has been included on

line 22. And finally, the shorthand macros wrapping each of the

member variables have been added on lines 41 through 47.

If users need to add random constraints, custom functions, or

customized implementation of built-in VMM data functions

they will need to extend from this data item and create a new

item to be passed throughout the SystemVerilog testbench.

Certain characteristics of the dumped SystemVerilog class can

be controlled from Specman itself using the reflection API and a

customized version of the sv_adapter_unit. This topic is

beyond the scope of this paper. However, as an introduction,

the addr field of vlab_simple_data_s can be forced to be

random in the stubs file via the following code.

1 unit vlab_simple_data_adapter_unit like
2 sv_adapter_unit {
3
4 // Output vlab_simple_data_s as a class
5 // instead of a struct (the default).
6 convert_struct_to_class(cur_struct:
7 rf_struct) : bool is {
8 return(TRUE);
9 }; // convert_struct_...
10
11 // Randomize the "addr" field of
12 // "vlab_simple_data_s"
13 randomize_field (cur_field : rf_field) :
14 bool is {
15 var cur_struct : rf_struct =
16 cur_field.get_declaring_struct();
17 if (cur_struct.get_name() ==
18 "vlab_simple_data_s" and
19 cur_field.get_name() == "addr") {
20 result = TRUE;
21 };
22 };
23
24 };

FIGURE 15: CONFIGURE 'RAND' KEYWORD USING SV_ADAPTER_UNIT

The vlab_simple_data_adapter_unit should be instantiated

somewhere within the environment as shown.

1 extend sys {
2 data_adapter: vlab_simple_data_adapter_unit
3 is instance;
4
5 };

FIGURE 16: INSTANTIATE ADAPTER UNIT UNDER SYS

The stubs file will now contain the "rand" keyword before the

addr field in the sn_vlab_simple_data_s class definition.

 Integrating e Verification IP in a VMM Testbench

 10 of 16

There are a few drawbacks to this approach. First, modifying

the stubs file is not recommended by Cadence as its contents

are not guaranteed to remain consistent between versions of

Specman. However, it is believed the changes suggested are to

areas of the file unlikely to change significantly, if at all,

between Specman versions.

Second, modifying the stubs file requires an additional step in

the compilation flow. After the stubs file is generated,

modifications must be made before the compile continues. At

most, a few additional lines of code were added to the example

Makefile to support post-processing. If this level of

modification to the build process is not possible, modifying the

stubs file may not be a practical approach.

Third, if more than one base class is needed the scripting effort

involved could become a gating factor. The examples in this

section assume that each class that must be instrumented

should be based on vmm_data. If that is not going to be the

case, additional logic would need to be scripted to determine

which classes should be based on vmm_data, and which should

be based on others (such as vmm_e_xactor, which will be

discussed in section 4.1).

Finally, depending on the complexity of the data structures

involved, it could be difficult to make the necessary additions to

the stubs file without a more advanced SystemVerilog parsing

capability. This could be especially true in the case where a data

structure is represented by a hierarchical set of objects.

3.2.2 CREATING THE USER-DEFINED ADAPTER
Another approach possible when using eVCs in a VMM

environment is to hand-code adapter classes. Classes that

represent data objects in e (for example, derived from

any_sequence_item) should be derived from vmm_data on the

SystemVerilog side. When creating the adapter class, users

must determine whether or not they want to randomize the

resulting data object in SystemVerilog or only randomize the

object in e.

4 BASIC SOLUTION
It is possible to define a robust, fully-featured interconnect

between e and SystemVerilog/VMM
2
 with a significant amount

of manual coding effort. Since one of the goals of this paper is

to avoid as much manual effort as possible, a scaled down

version of the interface will be defined. The framework

presented here will allow users to:

2
 Cadence’s OIG testbench generator can facilitate e to SV/OVM

when run on the IUS simulator.

 Start and configure eVCs from the primary

SystemVerilog/VMM testbench

 Start and stop eVCs using a vmm_xactor-based

interface

 Pass arbitrary configuration from SV to e via

vmm_opts

 Call arbitrary e methods (with no parameters or

return values)
3
 from SystemVerilog

 Easily pass data between e and SV, as long as the data

structure was originally defined in e

 Pass data between e and SV with manual effort

assuming data structure was originally defined in SV

The steps to accomplish these goals are described below.

4.1 THE GENERAL FLOW

Figure 17 demonstrates the high level architecture of the

infrastructure required to communicate between e and

SystemVerilog.

FIGURE 17: MULTI-LANGUAGE INFRASTRUCTURE

The basic execution flow for our e-SV framework is as follows:

1. VMM executes all phases up to and including build.

2. All randomized configuration relevant to the e

component hierarchy will be generated in

SystemVerilog.

3. During the build phase, a VMM-based wrapper for

each expected e object will be built. Objects will be

derived from a newly proposed class: vmm_e_xactor.

Each of these objects will register itself with a central

registry maintained in SystemVerilog

3
 For this to work, parameters must be passed via the Drop Box

described in section 4.5.

 Integrating e Verification IP in a VMM Testbench

 11 of 16

(vmm_e_xactor_registry). During registration, the

following information will be passed:

a. Pointer to the object

b. Logical name (string) of the object

c. Type of object (driver, monitor, generator,

group, etc). Currently, the type will be used

for debugging purposes only, but could be

used in the future for other purposes.

4. At the end of the build phase, call the “test”

command in e.

5. e components are instantiated and generated using

constraints from SystemVerilog and the vmm_opts

integration.

6. During the post_generate() step, e components add

themselves to the registry of e components on the

SystemVerilog side. Two important pieces of

information are registered:

a. Pointer to the e object (as a string e object

name, such as my_inst-@3)

b. Logical name of the component as a string.

For example, sys.my_vlab_evc.bfm.

Though the logical name could be passed

back relative to SystemVerilog if that can be

determined either during generation or by

the user who creates the e wrapper to

begin with.

7. When each e component is added to the registry, the

registry looks for a matching SystemVerilog

component. If none is found, an error is issued.

Additional checking could be added at the end of this

step to flag an error if a SystemVerilog component

has no matching e component.

Wrappers between VMM/SV and e can be created to deal with

the following types of interfaces:

 vmm_xactor::start_xactor and

vmm_xactor::stop_xactor()

 sequence/scenario-related methods

 TLM methods

 user-defined methods
4

On the SystemVerilog side, users can create wrappers deriving

from the class vmm_e_xactor. On the e side, users can

instrument their eVCs by extension via a set of macros:

 enable_vmm_xactor_integration

 enable_vmm_scenario_integration5
 enable_vmm_tlm_integration5

4

 Only start_xactor() and stop_xactor() have been
implemented in example code.

For example:

1 extend vlab_simple_seq_driver_u {
2 enable_vmm_xactor_integration;
3 };

Given an eVC and a VMM testbench, the following files will

need to be created by the user:

 myevc_config.e

o Contains extensions to enable interaction

with the VMM base classes, plus hooks to

pull information on unit configuration from

SystemVerilog during randomization.

 myevc_wrapper.sv

o Parameterized with SV-e adapter based on

vmm_data

o User wrapper based on vmm_e_xactor base

class. Users must implement custom

methods as needed to deal with

SystemVerilog-e integration issues.

 myevc_data_type.sv

o Derived from vmm_data

o Data items that users want to pass between

e and SV should be defined. Add fields to

control which random variables should be

used in e and which should be ignored.

4.2 CONFIGURATION WITH VMM_OPTS

vmm_opts is a VMM utility class that allows users to pass

configuration values from the simulation command line or

testbench source code to other portions of the environment

[3]. By wrapping this class appropriately, it can be used to

easily pass basic types (i.e. all types except user-defined types)

of configuration data from SystemVerilog to e.

There are three ways to save configuration values to the

vmm_opts database: call to the set_* API, from an external

options file, or from the simulation command line. [3] Each

value stored in the configuration database can be referenced

via a unique string id. For example, the number of agents to be

instantiated within an eVC could be randomized and stored in

the VMM configuration database.

5
 Scenario and TLM integration are proposed.

 Integrating e Verification IP in a VMM Testbench

 12 of 16

1 class vlab_tb_top extends vmm_group;
2
3 rand logic [3:0] num_agents;
4
5 constraint e_agent_count {
6 num_agents < 5;
7 num_agents > 1;
8 };
9
10 // ...
11
12 virtual function void build_ph();
13 this.randomize();
14 vmm_opts::set_int(
15 "num_agents", num_agents);
16 endfunction: build_ph
17
18 //...
19 endclass: vlab_tb_top

FIGURE 18: POPULATING VMM_OPTS DATABASE FROM SV

With the proper integration between e and SystemVerilog, the

num_agents parameter can be read out during the generation

phase of an e component as shown below.

1 extend vlab_simple_env_u {
2 // ...
3
4 // vmm_opts option processing
5 opts2e: vmm_opts2e_u;
6
7 // Instantiate a simple agent.
8 keep simple_agent_list.size() ==
9 opts2e.vmm_get_int$("num_agents");
10
11 };

FIGURE 19: RETRIEVING VMM_OPTS VALUES FROM E

Built-in types can easily be passed across the language

boundary using this approach. User-defined types do not work

well without user customization as the vmm_opts API stores

these objects as vmm_object types.

The vmm_opts integration is effectively a special case of the

drop box approach described in section 4.5.

FIGURE 20: VMM_OPTS -> E HOOKUP

As shown in Figure 20, a SystemVerilog interface,

vmm_opts2e_if, is created to facilitate calls from e

components. A call to each of the functions of vmm_opts is

made from an equivalently named function in the interface.

The interface is instantiated once, and is paired with a single

instance of an e unit called vmm_opts2e_u. vmm_opts2e_u

contains method ports corresponding to each of the wrapper

functions in vmm_opts2e_if.

Any e component with a pointer to the vmm_opts2e_u

instance can query the configuration registry in SystemVerilog.

In order to use the configuration registry during generation, any

required values must be written to the registry before or during

the build phase build_ph in the VMM.

4.3 REGISTRY

e method calls must be associated with a specific hdl_path().

If there are multiple eVC instances, a custom ID must be used

to call the methods in each one. Maintaining a mapping of IDs

to instances can be tricky as the numbers and types of eVCs and

instances scale. Automated code generation of the mapping

could help alleviate the issue, as could adding the ability to map

e method calls to SVTB dynamic calls to Specman. This type of

support does not currently exist between Specman and VCS.

Therefore, an alternate strategy is proposed.

A registry can be used to facilitate communication between e

and SystemVerilog. To simplify coding and maintenance, our

registry relies on two unique aspects of the e language to

simplify mapping. Usually, pointers to objects in another

language cannot be stored. However, in e it is possible to save a

string that serves as a pointer to a unique instance of an object.

Pointers are strings in the form of my_vlab_class-@3 which

means the @3 instance of my_vlab_class. Also, it is possible in

vmm_opts
global instance

vmm_opts2e_u

SV Modules

vmm_opts2e_if specman

SystemVerilog TB e

method-port

Wrapped
vmm_opts:;* API calls

DUT
Wrapped vmm_opts:;*

API calls

 Integrating e Verification IP in a VMM Testbench

 13 of 16

Specman to call commands using the specman() method. For

example:

1 // object_from_sv has been converted from SV
2 // to e by the Specman adapter and
3 // placed in the relevant drop box.
4 specman(

 “my_class-@3.send_data(object_from_sv)”);

FIGURE 21: USING 'SPECMAN()' TO EXECUTE ARBITRARY E CODE

As described in section 4.1 above, e objects that must be able

to communicate with SystemVerilog will register with the

central SystemVerilog registry during generation. During the

registration process, the string reference to the e object will be

stored in the registry. The enable_vmm_xactor_integration

macro defined below automatically registers instrumented

eVCs.

1 define
2 <enable_vmm_xactor_integration'struct_member>
3 "enable_vmm_xactor_integration" as {
4
5 opts2e: vmm_opts2e_u;
6 keep opts2e == sys.vmm_opts2e;
7
8 xactor_registry: vmm_e_xactor_registry_u;
9 keep xactor_registry ==
10 sys.vmm_e_xactor_registry;
11
12 // Functionality to start and stop this
13 // eVC. Must extend and implement
14 // this method.
15 start_e_xactor() is empty;
16 stop_e_xactor() is empty;
17
18 // ...
19
20 post_generate() is also {
21 var return_val: bit;
22 // Add this instance to the SystemVerilog
23 // object registry.
24 vmm_e_xactor_registry.\
25 register_vmm_e_xactor$(
26 short_name_path(), appendf("%s", me));
27 };
28 };

FIGURE 22: ENABLE_VMM_XACTOR_INTEGRATION MACRO

DEFINITION

The registry itself has two key functions.

1 function bit register_sv_xactor(
 string name, vmm_e_xactor x);

2 function void register_vmm_e_xactor(
 string name, string var_name);

FIGURE 23: VMM_XACTOR INTEGRATION FUNCTIONS

FIGURE 24: REGISTRY API

When registering the e component and its wrapper, the current

mechanism to ensure they are matched in the registry is to use

the same name for each transactor instance. One way to deal

with names is to use the short_name_path() of the e unit

being registered, and to use the same name for the VMM

transactor wrapper object as well.

4.4 SYNCHRONIZATION

vmm_e_xactor objects will be stopped and started via the

regular VMM start_xactor() and stop_xactor() methods.

This will provide a first level of synchronization between the

two language domains. eVCs will be “stopped” by default, and

must be activated initially via the start_xactor() command.

There are a variety of ways users could modify e components to

cause them to start and stop as desired. One example involves

starting and stopping a sequence driver.

Sequence drivers in e are responsible for sending traffic

generated by sequences to the BFM. Each sequence driver has

a default sequence that runs (or not) based on some user-

defined scheme. Usually this scheme involves setting the count

in the default sequence to 0 telling it not to generate any new

sequences. To accomplish something more complex, users

must come up with a strategy on their own. VMM transactors

based on vmm_xactor, on the other hand, have a convenient

mechanism for controlling when traffic generators should start

or stop – the vmm_xactor::start_xactor() and

vmm_xactor::stop_xactor() functions. When using the VMM

together with e, the VMM scheme can be used to our

advantage to easily control when sequence drivers are

activated to send traffic to the driver, or when the BFM itself

should even be requesting new transactions from the driver in

the first place. This mechanism could be used with just about

any e environment component, enabling the component to be

 Integrating e Verification IP in a VMM Testbench

 14 of 16

turned off or on as needed. One important point to mention is

that sequence drivers should not be disabled if they are

expected to receive requests from virtual sequences in other

parts of the testbench.

Using the registry described in section 4.3 and the

vmm_e_xactor base class, any call to

vmm_e_xactor::start_xactor() or stop_xactor() will call

the start_e_xactor() and stop_e_xactor() methods in the

correspondingly instrumented e units. Users must implement

start_e_xactor() and stop_e_xactor() in any units that will

take advantage of this feature. In this example, the approach

used for starting and stopping the sequence driver is first to set

a flag letting the driver know whether it should plan to start or

stop at the next opportunity. Instead of stopping the sequence

driver itself, we will stop the BFM. A more complex scheme

could be used instead depending on the requirements of the

interface.

1 extend vlab_simple_seq_driver_u {
2
3 // Keep a pointer to the BFM so we
4 // can turn it on and off. It will no longer
5 // pull transactions from the driver.
6 !bfm: vlab_simple_bfm_u;
7
8 start_e_xactor() is also {
9 bfm.is_enabled = TRUE;
10 };
11
12 stop_e_xactor() is also {
13 bfm.is_enabled = FALSE;
14 };
15
16 };

FIGURE 25: START/STOP E XACTOR IMPLEMENTATION

The BFM has been coded to respond on per-transaction

boundaries to the state of the is_enabled flag.

1 // Pull item from driver, process it, then
2 // inform using item_done
3 extend vlab_simple_bfm_u {
4 driver: vlab_simple_seq_driver_u;
5
6 // Flag to be set by vmm_e_xactor start/stop
7 // is_enabled: bool;
8 keep soft is_enabled == FALSE;
9
10 execute_items() @clk$ is {
11 var seq_item: vlab_simple_data_s;
12 while TRUE {
13
14 // Don't start executing items unless
15 // this driver is enabled.
16 wait true(is_enabled);
17
18 seq_item = driver.get_next_item();
19 drive_simple_data(seq_item);
20
21 emit driver.item_done;
22 };
23 };
24
25 run() is also {
26 start execute_items();
27 };
28
29 };

FIGURE 26: ADDING XACTOR CAPABILITIES TO E DRIVER

As can be seen on line 16, the driver will only attempt to get

another item if is_enabled is TRUE. It will not check

is_enabled again until after it has completed the current

transaction.

4.5 DROP BOX

The registry described in section 4.3 provides a mechanism for

dealing with many instances of an object containing methods

users would like to call. However, each time a method is added

to the object it must also be added to a SystemVerilog interface

and a method port must be created in e. The drop box provides

a means to allow new e methods to be created and called

without the need for a new interface or method port to be

created.

 Integrating e Verification IP in a VMM Testbench

 15 of 16

FIGURE 27: SV TO E DROP BOX

As shown in Figure 27, a SystemVerilog method places data in

the drop box by means of an intermediary interface instance. It

then calls the appropriate method in e via the $sn/specman()

commands. The e method (in this case, send_data())

immediately gets the relevant data item from the drop box. The

call to get_data() must take place before any time is

consumed in the method to prevent other methods using the

drop box from overwriting the data item. A new drop box must

be created for each data type to be passed between

SystemVerilog and e.

It is also possible to use the drop box to send data from e to

SystemVerilog.

FIGURE 28: E TO SV DROP BOX

Figure 28 shows the steps required to call a generic method in

SystemVerilog from e using the drop box to pass a data item. In

order for this approach to work users must implement a lookup

table in SystemVerilog mapping strings to actual method calls.

One way to accomplish this task would be to take advantage of

the VMM Callback mechanism. Users could add callbacks that

followed the following procedure:

1. Check to see if current string matches

2. If yes, call method

If the details of the interface between e and SystemVerilog are

known in advance and little change is expected, the more

straightforward approach is to create relevant method ports

directly to pass required data via method parameters.

5 FUTURE WORK
Once the basics of the SystemVerilog interface have been

established, users will immediately hit a number of issues

critical to building a successful testbench. The most pressing of

these will be in the areas of randomization, coverage collection,

and stimulus generation.

5.1 RANDOMIZATION AND COVERAGE

When using eVCs in a SystemVerilog testbench, it is natural to

want to control randomization and collection of functional

coverage as much as possible in the testbench’s native

language (SystemVerilog). However, since it is not possible to

pass actual data structures across the language interface, but

instead only copies, several limitations quickly become evident.

How many constraints from the original e struct need to be

rewritten to make randomization effective in SystemVerilog?

The same question applies to Functional Coverage as well.

What strategy should be used to communicate which fields

have already been randomized in SystemVerilog, and which

should still be randomized in e?

If randomization in SystemVerilog is desired, classes could be

constructed with control fields letting Specman know which

fields were randomized by e, and which were randomized

already in SystemVerilog.

1 class packet extends vmm_data;
2 rand reg[47:0] dst_addr;
3 // If 1, randomize dst_addr in e. If 0, it
4 // has already been set in SystemVerilog
5 bit randomize_dst_addr;
6
7 constraint dst_addr {
8 ...
9 };
10 endclass:packet

FIGURE 29: RANDOMIZATION BETWEEN E AND SV

 Integrating e Verification IP in a VMM Testbench

 16 of 16

5.2 STIMULUS

One of the key capabilities in both the VMM and eRM is the

ability to generate stimulus using sequences (eRM) and

scenarios (VMM). At a high level, the two methodologies

behave similarly. At a lower level, there are differences that

come into play that affect the way the libraries interact. The

main differences come in the usage model – push (VMM) vs.

pull (eRM). See [4] for more detailed description of the issue.

There are a number of possible use models that will need to be

examined in order to identify a complete solution for

integrating eVCs into a VMM environment, such as:

 Multi-Stream Scenarios (MSS) calling Sequences

 MSS executing sequence items

 Scenario generators passing data through a channel

to a sequencer

 Adding new “sequences” that are actually written as

SystemVerilog scenarios

Each of the above use cases is potentially valuable. However,

several of them require a significant amount of manual coding

and maintenance to enable them to scale properly in a large

verification environment without some sort of automated

solution. A tradeoff would likely be made to sacrifice some

flexibility and the ability to write all future stimuli in

SystemVerilog in order to make the final solution easier to

maintain.

Often engineers need to take advantage of verification IP

written in languages and methodologies other than the primary

ones used in their testbench. Users with eVC libraries can take

advantage of these existing components within a

SystemVerilog/VMM framework by following the suggestions

outlined in this paper. Specifically, techniques used to deal

with method ports, a description of the process required to

bring up the e and SystemVerilog simulations in the correct

order, and the methodology to be used to deal with passing

data across several permutations of standard VMM interfaces

have been addressed.

6 WORKS CITED

[1] Accellera. (2009, August) Verification Intellectual Property

(VIP) Recommended Practices v1.0. [Online].

http://www.accellera.org/activities/vip/VIP_1.0.pdf

[2] Cadence Design Systems. (2009) Specman Integrators

Guide.

[3] Synopsys, Inc. (2009) VMM 1.2 User Guide. [Online].

http://vmmcentral.org/onlinedoc/wwhelp/wwhimpl/js/ht

ml/wwhelp.htm

[4] JL Gray and Scott Roland. (2010, February) Stimulating

Scenarios in the OVM and VMM.

[5] Cadence Design Systems. (2009) Specman e Language

Reference.

[6] Cadence Design Systems. (2009) e Reuse Methodology

(eRM) Developer Manual.

http://www.accellera.org/activities/vip/VIP_1.0.pdf
http://vmmcentral.org/onlinedoc/wwhelp/wwhimpl/js/html/wwhelp.htm
http://vmmcentral.org/onlinedoc/wwhelp/wwhimpl/js/html/wwhelp.htm

