

12-NOV-2005 v1.2

Copyright © Verilab. All rights reserved

1

Shorten and Simplify SoC Verification using a Generic eVC
David Robinson, Verilab

E: david.robinson@verilab.com

Abstract:Abstract:Abstract:Abstract: This paper describes an e Verification
Component (eVC) that has been used in the
verification of four separate bus based SoCs with only
minimal modification. The user simply describes the
topology of the design and testbench to the eVC, and
the eVC uses this information to instantiate the correct
bus eVCs, to create the required scoreboards, to
generate customised functional coverage, to control
the default stimuli so that only realistic transactions
are generated, and to perform full bus infrastructure
verification.

Individual testbenches can define a working topology
to reduce the scope of the testbench, improve
performance, and reduce third party license usage.
The eVC greatly increases the user’s productivity by
automating many of the trivial but time-consuming
aspects of an SoC testbench. It has proven to be so
generic that certain tests can be moved between SoCs
without modification. The “self healing” nature of the
testbench makes mid-project design changes trivial to
deal with.

Once a design’s bus infrastructure has been verified,
the eVC provides an advanced platform on which to
build the rest of the testbench.

Introduction__________________________________1

Background__________________________________2

Key Concepts ________________________________2

The eVC _____________________________________6

Example Topology_____________________________8

Future Work________________________________ 10

Conclusions________________________________ 10

Related Work ______________________________ 11

Terminology________________________________ 11

References ________________________________ 11

Introduction

 IIIIT IS A TIME CONSUMINT IS A TIME CONSUMINT IS A TIME CONSUMINT IS A TIME CONSUMING TASK TO PREPARE AG TASK TO PREPARE AG TASK TO PREPARE AG TASK TO PREPARE A

testbench to verify an SoC. Integrating all of the
required eVCs, connecting them to the design
and making them play together is complex
enough, but that’s just the start. The bus eVCs
required to monitor the bus infrastructure of the
design need to be instantiated and configured.
Not only will you need to know several bus
protocols and their corresponding bus eVCs, you
will also need to know their quirky ways - those
unexpected little features that make life so
interesting.

Once the bus eVCs are in place, you will need
to write bus scoreboards, functional coverage
groups and stimuli for the SoC. Those buses and
components that do not deal with the full bus
protocol will have to be dealt with as special
cases. You will need to integrate all of the
register sequences that are required to control
the peripherals, instantiate eVCs in the
testbench to communicate with the design, build
a system-wide address map and so on.

Of course, such a testbench may be slow and
memory hungry due to the number of eVCs
loaded for the buses and components, and it
may also be license hungry. Those bus and
peripheral eVCs don’t always come for free. A
common solution to this is to build several
additional testbenches, each dealing with a sub-
system of the design.

Once you have all of this in place, it can be
reasonably assumed that one or more of the
following will occur:

■ Someone will want to use one of the
testbenches to functionally verify a component

■ Someone will change the specification, and
you'll find components moving to new buses,
bus protocols changing, bus protocol
limitations appearing, new peripherals added,
etc.

■ Someone will want to use your testbenches on
a derivative or next-generation design, when
“all” that is changed is the address map, the
number and types of the buses, the position
and number of components, and the number
of bus interfaces

12-NOV-2005 v1.2

Copyright © Verilab. All rights reserved

2

This paper reports on a generic SoC eVC we
have created for a customer that takes some
pain out of SoC verification. It provides near
automatic bus infrastructure and bus
connectivity verification for any bus-based
design, and provides a platform to be used for
the remaining verification.

Background

 DDDDESPITE THE FACT THATESPITE THE FACT THATESPITE THE FACT THATESPITE THE FACT THAT ALL ALL ALL ALL SSSSOOOOCCCC DES DES DES DESIGNS AREIGNS AREIGNS AREIGNS ARE

unique, when viewed in a certain way many start
to look suspiciously similar. Most SoCs are bus
based, and can be viewed as a connected graph
of buses, components, bus interfaces and
bridges. Slave bus interfaces will have at least
one address range, and there is a high
probability that some buses and bus interfaces
will not support the full bus protocol. For
instance, RETRY responses may not be
supported, and instruction fetch buses won’t
have write capabilities.

In addition to the structure of the SoC, the
verification process for different designs is
similar. One of the first tasks in verifying such an
eVC is to comprehensively check the bus
infrastructure using constrained random stimuli.
If the verification environment is set up correctly,
then these tests can also be used to verify the
connectivity between the bus and the bus
interfaces [1]. Directed or semi-directed tests will
be needed to sanity check a particular
component, to do use-case testing or to generate
characterisation patterns.

The requirements of a verification environment
for an SoC are also similar between disparate
designs. The verification environment(s) you
create for a design will be expected to deal with
both the entire SoC, sub-systems and possibly
even individual components. You can expect to
be asked to make it work on derivative designs
and the brand new architecture -
WhizzoSoC2005 - when it arrives.

This is exactly the situation we found ourselves
in a few projects ago, and we decided to do
something about it. Starting with the following

requirements, we built a generic SoC eVC that
jump starts our customer’s SoC verification
projects. We decided that the new eVC must:

■ automatically perform random bus
infrastructure verification of the design

■ be usable for directed and constrained
random verification of individual modules, sub
systems and the entire design

■ allow the design’s topology to be easily
described

■ use the topology description to automatically
generate scoreboards, coverage files and
stimuli, and to instantiate and configure the
eVCs required to deal with the design’s busses
and bridges

■ deal with buses and bus interfaces that do not
support all protocol features

■ deal with any changes to the design’s topology
occurring during the project

■ be able to control the loading of component
eVCs to increase performance and reduce
license usage

■ be able to control the working topology of the
design. By this we mean that each testbench
using the eVC should be able to specify which
subsystems are or are not included in the
testbench, and which components are black
boxed in the RTL to allow bus-infrastructure
testing of them

■ as much as possible, isolate the test writers
from changes to the specification, the RTL or
the eVC itself

Key Concepts

 BBBBEFORE WE DISCUSS WHAEFORE WE DISCUSS WHAEFORE WE DISCUSS WHAEFORE WE DISCUSS WHAT THE ET THE ET THE ET THE EVCVCVCVC ACTUALLY ACTUALLY ACTUALLY ACTUALLY

does, there are some key concepts that need to
be understood:

■ The topologies

■ The Topology Database

■ The APIs

12-NOV-2005 v1.2

Copyright © Verilab. All rights reserved

3

■ Bus protocol limitations

Design, Environment and Working Topology

It is commonly assumed that the topology of a
design is fixed and constant. In reality, this is not
always true. The topology of an SoC design can
change in two ways. One change in topology is
between designs in the same family. For
instance, between WhizzoSoC2004 and
WhizzoSoC2005, or between WhizzoSoC2004
and WhizzoSoC2004-LowPower, the topology will
change even though much of the overall
functionality remains the same. If we can
somehow encapsulate the changes, we can get
some reuse from the testbenches used to verify
earlier members of the family.

A design’s topology can also change within its
development cycle. We do not mean that the
specification changes1, but instead that we
define our own topologies based on the
verification task at hand. At one end of the scale
we want a testbench that deals with just a single
peripheral, and at the other, a testbench that
deals with all peripherals, all buses, and all
system wide features such as debug, test and
clocking. For speed, memory and license
reasons, we normally desire a selection of
testbenches that deal with different topologies
within these bounds. For instance, if we are
trying to verify the clocks on the AHB_COM_BUS1
sub-system, why include the multi-layer AHB bus,
the DSP sub-system, the other peripheral buses
and the AXI buses?

The topology seen by any particular testbench
is known as the working topologyworking topologyworking topologyworking topology. This is simply a
subset of the full topology. By programmatically
altering the design topology that the eVC can
see, we can use the same eVC to implement all
of the smaller testbenches normally required for
an SoC. For instance, the working topology can
be used to reduce the visible design to a single
sub-system, or a cluster of sub-systems, for the
testbench that is charged with verifying them.

1 although that happens too!

The working topology does more than just
change the number of design items seen by the
eVC. It is also used to control the black boxing of
HDL components. When we do bus infrastructure
testing and bus interconnectivity testing, we
need to generate random bus traffic. We cannot
do this if the HDL for the components attached
to the buses are present. Not only can we not
control the stimuli from the masters and the
responses from the slaves, but writing random
data to a random address in an SoC can quickly
cause a variety of interesting simulation failures.
For instance, there’s a good chance you’ll switch
the clocks off or put the design into reset.

The approach we use to deal with this is called
the skeleton approach [2]. HDL masters and
slaves on the bus or buses we are testing are
black boxed and replaced with active verification
models. This is only required for certain
testbenches, so this information forms part of
the testbench specific working topology.

As well as reducing the number of separate
testbenches that need to be created for an SoC,
the working topology also improves the
performance of the testbench by allowing us to
remove surplus HDL and verification
components. This also reduces the number of
licenses required for a simulation.

Of course, the overall topology seen by a
simulation does not just include the design.
Testbench components also form part of the
topology. For instance, if your SoC is designed to
be a slave on an AHB bus, then your testbench
will need to have a model of an AHB bus and an
AHB master as well. The eVC has to know about
these so it can control stimuli generation from
the master, implement a scoreboard between
the master and the SoC slave interface, generate
the coverage groups, etc. We therefore split the
idea of a topology into a design and environment
component. The eVC itself makes no distinction
between these - it just sees a large SoC
connected to other components, but the topology
information is captured separately to allow easy
reuse of the eVC in different testbenches.

12-NOV-2005 v1.2

Copyright © Verilab. All rights reserved

4

Figure 1 shows an example topology for a
design. This simple SoC has two buses with
different protocols, two primary masters (CPU
and DMA), and both the DMA and the Bridge
components have multiple bus interfaces. All of
this information is given to the eVC so it can build
its view of the design.

CPU DMA

AHB Bus

Memory

M

Crypto
Bridge

M

M

S

SSS

APB Bus

GPIOIRQ

SS

UART

S

Master bus interface

S Slave bus interface

M

Figure Figure Figure Figure 1111: The design topology: The design topology: The design topology: The design topology

In Figure 2, we can see an example of the
working topology in action. This working topology
is for a bus infrastructure test of the AHB bus
sub-system. The entire APB bus is removed from
the topology, and all of the masters and slaves
on the AHB bus are black boxed in the RTL. The
SoC eVC instantiates active agents on the AHB
bus interfaces to inject random transactions and
responses.

CPU DMA

AHB Bus

Memory

M

Crypto
Bridge

M

M

S

SSS

APB Bus

GPIOIRQ

S

X

UART

S

X Black boxed component

X Black boxed bus
interface replaced with
an active Agent

A component removed
from the working
topology completely

S

Key

Figure Figure Figure Figure 2222: The working topology for bus : The working topology for bus : The working topology for bus : The working topology for bus
infrastructure testing of the AHB subinfrastructure testing of the AHB subinfrastructure testing of the AHB subinfrastructure testing of the AHB sub----systemsystemsystemsystem

Figure 3 shows a more complex example of a
working topology. This one has been set up to do
a use-case performance analysis. The DMA
controller transfers data from the memory to the
Crypto unit and then from there to the UART for
off-chip transmission. The transfer is controlled
by interrupts. Both subsystems are needed for
this (the AHB and the APB), and the RTL for the
DMA, the bridge, the IRQ and the UART are
needed, so they are included in the working
topology (they are not black boxed). The master
and slave interfaces of these components have
passive agents instantiated to allow us to
monitor the bus traffic and to do functional
coverage.

12-NOV-2005 v1.2

Copyright © Verilab. All rights reserved

5

CPU DMA

AHB Bus

Memory

X

Crypto
Bridge

M S

S

GPIOIRQ

S

UART

X Black boxed component
replaced with eVC

A bus interface

shadowed by a passive
Agent

M

S

M

S S

S

Key

APB Bus

Figure Figure Figure Figure 3333: The working topology for a specific use: The working topology for a specific use: The working topology for a specific use: The working topology for a specific use----
casecasecasecase

The Crypto component is treated differently.
We want to include its functionality in this
simulation, but we don’t want the speed
penalty of letting the RTL perform the
functionality. What we have done here is to
black box the RTL for the Crypto component,
and load up an eVC in active mode to get its
functionality at a behavioural level [1].

Topology Database

Most of the above information is stored in a
database in the eVC, called the Topology
Database, which forms the heart of the eVC.
Almost everything else in the eVC either uses or
supports the database. The information in the
database forms a graph which tells us what
“things” have in the design, what attributes
these “things” support, and how these “things”
are linked to each other. “Things” are either
buses, components or bus interfaces.

Buses form the communication channels in the
database. The database contains a list of bus
descriptors, and each descriptor contains
information such as the name of the bus, its
protocol, whether it is multi-layer or not, its
routing table if it is, a list of components
attached to the bus, whether it is black boxed

and the protocol features the bus doesn’t
support. Each bus entry has an associated bus
eVC instantiated in the testbench (assuming it is
in the working topology).

Components are used to group bus interfaces
together. The database contains a list of
component descriptors, and each descriptor
contains information such as the name of the
component, whether it represents a peripheral or
a bridge, a list of all the bus interfaces the
component has, and whether it is black boxed.

Bus interfaces are the main element in the
Topology Database. A bus interface entry must
be part of a component, and it describes one of
the component’s bus interfaces. These can
currently be masters or slaves. A component can
have many bus interfaces on many different
buses. Each bus interface entry has an
associated agent instantiated in the testbench
(assuming it is in the working topology). A bus
interface entry contains information such as its
name, the kind of interface (master or slave), the
name and protocol of the bus it connects, the
features of the protocol that it doesn’t support,
and whether it is black boxed.

Slave bus interfaces store the slave’s address
ranges, and master entries store the register
sequence driver for the master. Specific
information relevant to the corresponding agent
can also be stored in a protocol extension of the
entry.

When the eVC is ported to a new design,
someone has to fill in the Topology Database to
describe the structure of the design. Once this is
done though, almost everything else, including
certain tests, will work automatically on the new
design.

The APIs

The eVC has two APIs (Application
Programming Interfaces) which are used to both
make the eVC easy to use and to provide a layer
of encapsulation against changes. The Test API is
provided exclusively for test writers. This provides
named access to the various sequence drivers in

12-NOV-2005 v1.2

Copyright © Verilab. All rights reserved

6

the eVC. For instance, a test writer can make the
system CPU perform a sequence without
knowing where the CPU is in the design, or what
bus protocol it uses:

do seq keeping{

 .driver == driver.test_api.

 get_bus_sequence_driver(CPU);

 // Other constraints removed for clarity

};

If the SoC’s topology changes, and the CPU
moves to another bus, or if it moves off chip, or if
it changes bus protocol, then this test will
continue to work without modification. As long as
there is a master bus interface called CPU in the
topology, no modification have to be made. A
factory pattern is used to create the correct type
of master sequence.

The Topology API provides an interface to the
Topology Database. The Topology API exports
many different methods, some of which are
heavily used by the eVC itself, and some of which
are of great use to test writers. The Topology API
is extendable, so new methods can be added as
required. Some examples of methods are:

■ get_active_flagget_active_flagget_active_flagget_active_flag: This method tells you whether
a bus interface is active of passive

■ get_address_for_slaveget_address_for_slaveget_address_for_slaveget_address_for_slave: This method returns a
random address belonging to the named slave

■ is_bus_interface_black_boxedis_bus_interface_black_boxedis_bus_interface_black_boxedis_bus_interface_black_boxed: This method
returns TRUE if the specified bus interface is
black boxed

■ get_all_reachable_get_all_reachable_get_all_reachable_get_all_reachable_slavesslavesslavesslaves: This method returns
all slave that can be reached by the specified
master bus interface. This method searches
through bridges, so it returns every slave in
the entire topology that can be reached by this
master. Routing tables on multi-layer buses
are also taken into consideration. Complex
filters can be applied to restrict the results to
slaves that meet certain criteria, such as “only
return black boxed slaves on buses with the
AHB and AXI protocols”

Bus Protocol Limitations

One other thing that the eVC needs to know
about is to what degree the buses and bus
interfaces in the design implement their bus
protocols. For example, there is normally not
much reason for the CPU instruction interface to
support write accesses. You’ll find that certain
masters in the design can only generate 32-bit
transfers or bursts of a certain type, and that
slaves do not support responses other than OK
or ERROR. These limitations may just apply to
individual bus interfaces, or they may apply to
the entire bus.

The user of the eVC can capture this
information when he defines the topology of the
design. The information is stored using the types
that the underlying bus eVCs will use.

The eVC

 NNNNOW WE KNOW WHAT INFOOW WE KNOW WHAT INFOOW WE KNOW WHAT INFOOW WE KNOW WHAT INFORMATION THE ERMATION THE ERMATION THE ERMATION THE EVCVCVCVC HAS HAS HAS HAS
about the design and testbench, what does it do
with this information? Well, it does quite a lot
actually:

■ It automatically instantiates and configures
the eVCs needed to verify the design

■ It automatically creates and connects the
scoreboards required for bus infrastructure
testing

■ It creates the functional coverage required for
bus infrastructure testing, taking the protocol
limitations and design connectivity into
account

■ It controls the random bus traffic generated,
taking the protocol limitations and design
connectivity into account

■ It uses the information to verify the design’s
bus infrastructure

■ It sets up the register and memory maps for
the design

These are all tasks that are otherwise time
consuming and cause problems when the design
changes.

12-NOV-2005 v1.2

Copyright © Verilab. All rights reserved

7

Scoreboards

The SoC eVC provides automatic scoreboarding
for all bus traffic. To reduce the complexity of the
code required, the eVC uses a simple segmented
point-to-point scoreboard structure as shown in
Figure 4. The transfer between a master and a
slave is broken down into its individual
segments, where each segment is a single bus or
a bridge. The overall transfer is therefore treated
as a series of smaller transfers, which keeps the
code complexity down and makes it easy to
pinpoint where a transfer is failing.

For each master on a bus, the eVC works out
which slaves on the bus that the master can
communicate with and creates a scoreboard for
each path. For example, if a master can
communicate with three slaves on its bus, the
master will have three scoreboards - one going to
each slave. The eVC also identifies bridges and
adds a special scoreboard across the bridge that
checks traffic across the bridge. Using this
scheme, simple scoreboards can be used to
check that any access from any master to any
slave is correct.

CPU

AHB Bus

MemoryCrypto
Bridge

M

SSS

APB Bus

GPIOIRQ

SS

UART

S

Scoreboard

M

Key

S S

S

S

S

S S S

Figure Figure Figure Figure 4444: The scoreboard structure: The scoreboard structure: The scoreboard structure: The scoreboard structure

Functional Coverage

In order to have coverage definitions that
match the design, we do not use the coverage
supplied with the bus eVCs. Instead, we define

our own coverage groups which are similar to the
original coverage but with modifications to make
things easier for the rest of the eVC.

As discussed earlier, each master and slave
bus interface can have protocol limitations which
means that they will have coverage holes if the
default coverage is used. There are also
limitations on the slaves a master can reach.
This may be because the slave is on a completely
independent bus system, or that the routing
table on a multi-layer specifies that the master
can’t see the slave.

Whatever the reason, we need to create
individual coverage groups for each bus interface
in the design. In the e language, coverage groups
must be valid at compile time which is before the
Topology Database has been initialised. We deal
with this by having the eVC operate in a special
mode where it uses the Topology Database to
write out the customised coverage files. These
can then be loaded by a later simulation.

Intra-bus Traffic Generation

It would normally be easy to generate bus
traffic in an SoC. Black box the master or slave,
attach an active interface agent (an AHB master,
an APB slave, etc) and let it generate random
transactions. Most agents do this by default, so
what can we offer here?

Well, we can offer several things. The eVC
supplies default master and slave sequences
that take the topology of the design into account,
which is essential on buses with a routing table.
On many designs, just being a master on a bus
doesn’t let you see all of its slaves.

The eVC also takes the bus protocol limitations
into account. If you told the eVC that your CPU
instruction interface cannot performs writes,
then you don’t particularly want the default
master sequence randomly generating writes. If
your AHB bus doesn’t support SPLIT responses,
then you don’t want to see these either. Due to
the nature of the bus eVCs we have used, and

12-NOV-2005 v1.2

Copyright © Verilab. All rights reserved

8

their desire to be really helpful2, it can actually
be quite difficult to stop them doing certain
things.

One other feature provided by default is that
the eVC will bias the default transaction
generation towards hard to reach areas that we
define in the eVC’s functional coverage [3]. For
example, many bus master sequences will
generate random transfers that are bounded by
the user-supplied minimum and maximum
addresses. For functional coverage, we split each
address segment into four sections - base
address, lower range, upper range and top
address. The lower and upper ranges are really
easy to hit during simulations.

Without our biasing, hitting the lower address
of a slave address range was a rare occurrence,
and after running 1 million bus bursts (each
burst accessed multiple addresses) we never
once hit any of the upper addresses.

Bus Infrastructure and Interconnect Testing

Bus infrastructure and interconnect testing are
fairly identical on every design. Or at least, they
are once you know what the eVC knows. Tucked
away in its Topology Database it knows the entire
bus connectivity of the design and all protocol
limitations. It knows the number of address
ranges each slave has and the bounding
addresses of each. It knows which of these
address ranges can be accessed randomly
without side effects, and which ones are unsafe
to do so. It knows which bus interfaces have not
been black boxed and can omit them from
random testing.

2 The helpfulness of some commercial eVC writers has in fact
been the biggest problem we have had to overcome to create
this eVC. In their desire to be super helpful, many have made
it almost impossible to use their eVCs in a flexible manner.
For instance, while defining slave memory maps through
macros is nice, it also prevents you doing it programmatically,
and causes people to create inflexible verification
environments.

The default bus infrastructure sequence
shipped with the eVC can be congigured as
follows:

■ Number of pathsNumber of pathsNumber of pathsNumber of paths:::: A path is a master to slave
transaction, which may be a burst

■ NuNuNuNumber of threadsmber of threadsmber of threadsmber of threads:::: This controls how many
paths will be run in parallel. Each thread will
run the full number of paths. So if you specify
100 paths and 10 threads that the eVC will do
1000 paths in total

And that’s it. From here, the sequence will
automatically deal with everything else. If you
move it to a new working topology, it will work. If
you move it to a new design, it will continue to
work. If you change bus protocols, add new bus
interfaces or bus limitations, it will continue to
work without modification.

Code Sample 1 shows the bus infrastructure
test required for any bus based SoC. This will
generate random traffic between 20,000 master
and slave combinations, running four masters in
parallel. Of course, custom reset and
initialisation sequences will also have to be
added.
<'

extend MAIN vlb_soc_virtual_sequence {

 !bus_inf: PARALLEL_RANDOM_BUS_TRAFFIC

 vlb_soc_virtual_sequence;

 body() @driver.clock is {

 do bus_inf keeping{

 .number_of_paths == 5000;

 .number_of_threads == 4;

 };

 };

};

'>

Code Sample Code Sample Code Sample Code Sample 1111: The bus infrastructure test for : The bus infrastructure test for : The bus infrastructure test for : The bus infrastructure test for
any bus based SoCany bus based SoCany bus based SoCany bus based SoC

Example Topology

 AAAALL A USER NEEDS TO DLL A USER NEEDS TO DLL A USER NEEDS TO DLL A USER NEEDS TO DO TO USE THE EO TO USE THE EO TO USE THE EO TO USE THE EVCVCVCVC ON THEIR ON THEIR ON THEIR ON THEIR
project us to define the topology of the design
and testbench. These topologies are stored
separately, but they are done identically, so we
will not make any further distinction here. The

12-NOV-2005 v1.2

Copyright © Verilab. All rights reserved

9

following code samples are taken from a real
topology definition.

#ifdef USE_SUBSYSTEM_MAIN_BUS{ 1
 add bus {

 name : AHBM;

 protocol : AHB;

 multi-layer : TRUE;

2

 <limitations>;

 add size : TWO_WORDS;

 add size : FOUR_WORDS;

 add size : EIGHT_WORDS;

 add size : SIXTEEN_WORDS;

 add size : K_BITS;

 // Do not allow splits or

 // retries on this bus

 add slave_responses : RETRY;

 add slave_responses : SPLIT;

 </limitations>;

 };

3

 // Instantiate the bus eVC

 ahb bus MAIN_BUS "rst_n" "clk" "";

};

4

 Code Sample Code Sample Code Sample Code Sample 2222: Adding a bus to the topology: Adding a bus to the topology: Adding a bus to the topology: Adding a bus to the topology

Code Sample 2 shows how to add a bus to the
topology. Points 2 and 3 add the bus entry to the
Topology Database and point 4 instantiates the
third party bus eVC. In this case, it is the AHB
eVC from Cadence. This particular AHB bus
doesn’t support transfers wider that 32 bits, retry
responses or split responses. This is specified at
point 3. The code at point 1 is used to control the
working topology. If the user specifies that the
MAIN_BUS subsystem is not to be used, then this
bus will not be added to the topology.

#ifdef USE_SUBSYSTEM_MAIN_BUS{
 add component_new{

 name : CPU;

 kind : PERIPHERAL;

 };

1

};

Code Sample Code Sample Code Sample Code Sample 3333: Adding a component : Adding a component : Adding a component : Adding a component to the to the to the to the
topologytopologytopologytopology

Code Sample 3 adds a component to the
topology. It does this at point 1. There isn’t much
else to do with a component, although you may
chose to load a third party eVC from here.

In Code Sample 4 below we add a master bus
interface to the Topology Database. This is the
master interface for the CPU component defined
in Code Sample 3. The bus interface entry is
added at 1, and the interface agent is added at
2. One task we leave for the user is to define the
signal map for each agent. This, unfortunately,
can’t be automated.

In fact, automating this from the same
description used to generate the design itself
would be a bad idea. If a signal was missed from
the common connectivity definition, the
testbench would necessarily find the bug,
because it would not expect the signal to exist.

#ifdef USE_SUBSYSTEM_MAIN_BUS{
 add master bus_interface_new{

 name : CPU_IF;

 component: CPU;

 bus : MAIN_BUS;

 protocol : AHB;

 <limitations>;

 set no_lock : TRUE;

 add transfer_kind : BUSY;

 </limitations>;

 };

1

 // Instantiate the Master agent

 ahb master vlb_soc_main_bus_u CPU_IF

 0 FALSE "rst_n" "clk";

 // Connect up the master

 extend CPU_IF VLB_SOC

 vr_ahb_master_signal_map {

 // Signal connects removed

 // for clarity

 };

};

2

Code Sample Code Sample Code Sample Code Sample 4444: Adding a bus interface to the : Adding a bus interface to the : Adding a bus interface to the : Adding a bus interface to the
topologytopologytopologytopology

The last code we need to show is the code
required to define the working topology for a
testbench. This is specified in a text file and
processed by a Perl script. The output of this
script is an e file with #defines and an e file to
configure the active flags in the Topology
Database.
<use>

 AHB t // Use the AHB eVC

 CIPHER f // Don't use the GPRS eVC

</use>

12-NOV-2005 v1.2

Copyright © Verilab. All rights reserved

10

<subsystem>

 MAIN_BUS t // Include the MAIN_BUS

 // subsystem

 SECURITY f // Don't include the

 // SECURITY subsystem

</subsystem>

<black_box>

 bus f MAIN_BUS; // Don't black box the

 // MAIN_BUS

 bus t SEC_BUS; // Black box the

 // Security bus

 com t CPU; // Black box the CPU

 // component

 bif t CPU_IF; // Black box the CPU's

 // master interface

 // Other entries removed

</black_box>

Code Sample Code Sample Code Sample Code Sample 5555: Specifying a working topology: Specifying a working topology: Specifying a working topology: Specifying a working topology

Future Work

 TTTTHE EHE EHE EHE EVCVCVCVC AS IT EXISTS TODAY AS IT EXISTS TODAY AS IT EXISTS TODAY AS IT EXISTS TODAY SATISFIES ALL THESATISFIES ALL THESATISFIES ALL THESATISFIES ALL THE
uses our customer currently has for it. It is being
successfully used on several projects, and we
are waiting until these are complete before
planning any new features. Three candidate
possibilities have emerged, but we are still
looking for justification to make the changes.

A mappiA mappiA mappiA mappinnnng layer:g layer:g layer:g layer: The eVC can encapsulate the
architecture of the design and some of its
capabilities, but what it’s can’t do, unless you
define multiple topologies, is encapsulate the
technology mapping of the design. By default,
the eVC assumes that buses and bus interfaces
are mapped to VHDL. If one is mapped to Verilog
or SystemC, then this has to be specified
somewhere, and the topology definition is the
most obvious place. In some larger projects there
may be the need to change this mapping for
certain testbenches. For some, a bus interface
may be implemented in Verilog, but for others it
might be in SystemC for performance reasons. In
other testbenches it may be on a hardware
accelerator.

Port to other languagesPort to other languagesPort to other languagesPort to other languages:::: The eVC is in e, but
there are no reasons why it couldn’t be written in
Vera or SystemVerilog. However, there are
currently no requirements for this.

Alignment with SPIRIT:Alignment with SPIRIT:Alignment with SPIRIT:Alignment with SPIRIT: The SPIRIT consortium
[5] are attempting to ease the use of IP by
developing an XML standard for describing the
physical attributes of the IP. These descriptions
can be brought together to form a description of
the overall design, which can then be processed
by a set of custom tools. The current release
(1.0) does not contain enough information to
generate a testbench as we have done, but there
is a verification working group looking into this.
As our eVC is already synergistic with the existing
SPIRIT approach, we would consider full
alignment an obvious approach. This of course
will depend on SPIRIT supporting all of the
features that we need, and our customer
supporting SPIRIT.

Conclusions

 OOOOUR GENERIC UR GENERIC UR GENERIC UR GENERIC SSSSOOOOCCCC E E E EVCVCVCVC BRINGS REAL COST BRINGS REAL COST BRINGS REAL COST BRINGS REAL COST ANDANDANDAND
time savings to verification projects. Even on
large designs, we can run the first tests within
days of receiving the RTL for the bus
infrastructure. On the latest design, we went
from receiving the specification to 100%
functional coverage for the bus infrastructure
tests in just 4 days, which included waiting for
critical RTL fixes. Because the eVC is designed to
deal with change, the design can subsequently
arrive in stages without having any significant
impact on the verification.

No real knowledge of e is required to use the
eVC, because the topology definition and control
is mainly macro based. Users don’t need to know
how to instantiate the eVCs required for the
busses, how to deal with their strange and
unexpected behaviours, or how to set up the
design’s address maps. No complex
programming is required [1], team members
don’t need to know the eRM or other coding
techniques, and good encapsulation is provided
by default.

By severely reducing the time it takes to set up
a project’s verification environment, the number
of verification engineers it needs, and the skill
level of those engineers, projects using this eVC

12-NOV-2005 v1.2

Copyright © Verilab. All rights reserved

11

can reduce their costs and increase their
chances of taping out their designs on schedule.

Related Work

 WWWWE ARE NOT THE FIRST E ARE NOT THE FIRST E ARE NOT THE FIRST E ARE NOT THE FIRST PEOPLE TO TRY AND EAPEOPLE TO TRY AND EAPEOPLE TO TRY AND EAPEOPLE TO TRY AND EASESESESE
verification by letting users specify the design at
a high level and then automatically generating a
testbench.

The X-Gen tool [4] is intended to replace the e,
Vera and SystemVerilog languages. Users
describe the components, the interconnectivity
and the transactions between the components,
and the tool will generate random stimuli for the
design. Self checking and functional coverage
have to be provided by other means. As it is not a
standard language, it doesn’t appear to be
possible to make use of existing verification IP.

Beach Solutions sell two commercial tools that
take a central description of the design and
automatically generate a verification
environment. These both appear to be aimed at
generating register tests, but will also instantiate
the AHB eVC from Cadence. It is unclear if the
resulting environment can be manually extended
while maintaining the ability to be automatically
regenerated.

The SPIRIT consortium, of which Beach
Solutions is a founding member, is working on
extending their XML schema to include
information needed to generate testbenches for
a design. As discussed in “Future Work”, we will
look at aligning with SPIRIT when it becomes
publicly available.

Terminology

BusBusBusBus:::: a communication channel that connects
masters to slaves. This would normally consist of
multiple signals, but a point-to-point wire
connection also qualifies. A bus would typically
have a non-trivial protocol.

Component:Component:Component:Component: an object in the design,
components are also known as blocks or
modules.

Bus Interface: Bus Interface: Bus Interface: Bus Interface: the interface between a
component and a bus. A component can have
one or more bus interfaces. For instance, a DMA
component may have a slave bus interface for
configuration, and two master interfaces per
DMA channel.

Bus eVC:Bus eVC:Bus eVC:Bus eVC: An eVC that can monitor and model a
bus. An eVC that provides agents for AHB
masters, slaves, decoders and arbiters is an
example of a bus eVC.

References
[1] G. Mosensoson, “Practical Approaches

to SoC Verification”, Verisity Design
Whitepaper

[2] Dr. M. Ruhwandl, “Functional System
Verification Planning and Execution
Using Skeleton Approach”, ClubV, March
2005

[3] R. Emek, et al, “Quality Improvement
Methods for System-Level Stimuli
Generation”, ICCD 2004

[4] A. Golin et al, "X-Gen: A Random Test-
Case Generator For Systems And Socs",
HLDVT '02 , Nov 2002

[5] “Structure for Packaging, Integrating and
Re-using IP within Tool-flows”, SPIRIT,
http://www.spiritconsortium.org/index.h
tml

