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Abstract:Abstract:Abstract:Abstract: This paper describes an e Verification 
Component (eVC) that has been used in the 
verification of four separate bus based SoCs with only 
minimal modification. The user simply describes the 
topology of the design and testbench to the eVC, and 
the eVC uses this information to instantiate the correct 
bus eVCs, to create the required scoreboards, to 
generate customised functional coverage, to control 
the default stimuli so that only realistic transactions 
are generated, and to perform full bus infrastructure 
verification.  

Individual testbenches can define a working topology 
to reduce the scope of the testbench, improve 
performance, and reduce third party license usage. 
The eVC greatly increases the user’s productivity by 
automating many of the trivial but time-consuming 
aspects of an SoC testbench. It has proven to be so 
generic that certain tests can be moved between SoCs 
without modification. The “self healing” nature of the 
testbench makes mid-project design changes trivial to 
deal with.  

Once a design’s bus infrastructure has been verified, 
the eVC provides an advanced platform on which to 
build the rest of the testbench. 
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Introduction 

 IIIIT IS A TIME CONSUMINT IS A TIME CONSUMINT IS A TIME CONSUMINT IS A TIME CONSUMING TASK TO PREPARE AG TASK TO PREPARE AG TASK TO PREPARE AG TASK TO PREPARE A    

testbench to verify an SoC. Integrating all of the 
required eVCs, connecting them to the design 
and making them play together is complex 
enough, but that’s just the start. The bus eVCs 
required to monitor the bus infrastructure of the 
design need to be instantiated and configured. 
Not only will you need to know several bus 
protocols and their corresponding bus eVCs, you 
will also need to know their quirky ways - those 
unexpected little features that make life so 
interesting.  

Once the bus eVCs are in place, you will need 
to write bus scoreboards, functional coverage 
groups and stimuli for the SoC. Those buses and 
components that do not deal with the full bus 
protocol will have to be dealt with as special 
cases. You will need to integrate all of the 
register sequences that are required to control 
the peripherals, instantiate eVCs in the 
testbench to communicate with the design, build 
a system-wide address map and so on.  

Of course, such a testbench may be slow and 
memory hungry due to the number of eVCs 
loaded for the buses and components, and it 
may also be license hungry. Those bus and 
peripheral eVCs don’t always come for free. A 
common solution to this is to build several 
additional testbenches, each dealing with a sub-
system of the design.  

Once you have all of this in place, it can be 
reasonably assumed that one or more of the 
following will occur:   

■ Someone will want to use one of the 
testbenches to functionally verify a component 

■ Someone will change the specification, and 
you'll find components moving to new buses, 
bus protocols changing, bus protocol 
limitations appearing, new peripherals added, 
etc. 

■ Someone will want to use your testbenches on 
a derivative or next-generation design, when 
“all” that is changed is the address map, the 
number and types of the buses, the position 
and number of components, and the number 
of bus interfaces 
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This paper reports on a generic SoC eVC we 
have created for a customer that takes some 
pain out of SoC verification. It provides near 
automatic bus infrastructure and bus 
connectivity verification for any bus-based 
design, and provides a platform to be used for 
the remaining verification.  

Background 

 DDDDESPITE THE FACT THATESPITE THE FACT THATESPITE THE FACT THATESPITE THE FACT THAT ALL  ALL  ALL  ALL SSSSOOOOCCCC DES DES DES DESIGNS AREIGNS AREIGNS AREIGNS ARE    

unique, when viewed in a certain way many start 
to look suspiciously similar. Most SoCs are bus 
based, and can be viewed as a connected graph 
of buses, components, bus interfaces and 
bridges. Slave bus interfaces will have at least 
one address range, and there is a high 
probability that some buses and bus interfaces 
will not support the full bus protocol. For 
instance, RETRY responses may not be 
supported, and instruction fetch buses won’t 
have write capabilities.  

In addition to the structure of the SoC, the 
verification process for different designs is 
similar. One of the first tasks in verifying such an 
eVC is to comprehensively check the bus 
infrastructure using constrained random stimuli. 
If the verification environment is set up correctly, 
then these tests can also be used to verify the 
connectivity between the bus and the bus 
interfaces [1]. Directed or semi-directed tests will 
be needed to sanity check a particular 
component, to do use-case testing or to generate 
characterisation patterns. 

The requirements of a verification environment 
for an SoC are also similar between disparate 
designs. The verification environment(s) you 
create for a design will be expected to deal with 
both the entire SoC, sub-systems and possibly 
even individual components. You can expect to 
be asked to make it work on derivative designs 
and the brand new architecture - 
WhizzoSoC2005 - when it arrives.  

This is exactly the situation we found ourselves 
in a few projects ago, and we decided to do 
something about it. Starting with the following 

requirements, we built a generic SoC eVC that 
jump starts our customer’s SoC verification 
projects. We decided that the new eVC must: 

■ automatically perform random bus 
infrastructure verification of the design 

■ be usable for directed and constrained 
random verification of individual modules, sub 
systems and the entire design 

■ allow the design’s topology to be easily 
described  

■ use the topology description to automatically 
generate scoreboards, coverage files and 
stimuli, and to instantiate and configure the 
eVCs required to deal with the design’s busses 
and bridges 

■ deal with buses and bus interfaces that do not 
support all protocol features 

■ deal with any changes to the design’s topology 
occurring during the project 

■ be able to control the loading of component 
eVCs to increase performance and reduce 
license usage 

■ be able to control the working topology of the 
design. By this we mean that each testbench 
using the eVC should be able to specify which 
subsystems are or are not included in the 
testbench, and which components are black 
boxed in the RTL to allow bus-infrastructure 
testing of them 

■ as much as possible, isolate the test writers 
from changes to the specification, the RTL or 
the eVC itself 

Key Concepts 

 BBBBEFORE WE DISCUSS WHAEFORE WE DISCUSS WHAEFORE WE DISCUSS WHAEFORE WE DISCUSS WHAT THE ET THE ET THE ET THE EVCVCVCVC ACTUALLY ACTUALLY ACTUALLY ACTUALLY    

does, there are some key concepts that need to 
be understood:  

■ The topologies 

■ The Topology Database 

■ The APIs 
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■ Bus protocol limitations 

Design, Environment and Working Topology 

It is commonly assumed that the topology of a 
design is fixed and constant. In reality, this is not 
always true. The topology of an SoC design can 
change in two ways. One change in topology is 
between designs in the same family. For 
instance, between WhizzoSoC2004 and 
WhizzoSoC2005, or between WhizzoSoC2004 
and WhizzoSoC2004-LowPower, the topology will 
change even though much of the overall 
functionality remains the same. If we can 
somehow encapsulate the changes, we can get 
some reuse from the testbenches used to verify 
earlier members of the family.  

A design’s topology can also change within its 
development cycle. We do not mean that the 
specification changes1, but instead that we 
define our own topologies based on the 
verification task at hand. At one end of the scale 
we want a testbench that deals with just a single 
peripheral, and at the other, a testbench that 
deals with all peripherals, all buses, and all 
system wide features such as debug, test and 
clocking. For speed, memory and license 
reasons, we normally desire a selection of 
testbenches that deal with different topologies 
within these bounds. For instance, if we are 
trying to verify the clocks on the AHB_COM_BUS1 
sub-system, why include the multi-layer AHB bus, 
the DSP sub-system, the other peripheral buses 
and the AXI buses? 

The topology seen by any particular testbench 
is known as the working topologyworking topologyworking topologyworking topology. This is simply a 
subset of the full topology. By programmatically 
altering the design topology that the eVC can 
see, we can use the same eVC to implement all 
of the smaller testbenches normally required for 
an SoC. For instance, the working topology can 
be used to reduce the visible design to a single 
sub-system, or a cluster of sub-systems, for the 
testbench that is charged with verifying them.  

                                                           

1 although that happens too! 

The working topology does more than just 
change the number of design items seen by the 
eVC. It is also used to control the black boxing of 
HDL components. When we do bus infrastructure 
testing and bus interconnectivity testing, we 
need to generate random bus traffic. We cannot 
do this if the HDL for the components attached 
to the buses are present. Not only can we not 
control the stimuli from the masters and the 
responses from the slaves, but writing random 
data to a random address in an SoC can quickly 
cause a variety of interesting simulation failures. 
For instance, there’s a good chance you’ll switch 
the clocks off or put the design into reset.  

The approach we use to deal with this is called 
the skeleton approach [2]. HDL masters and 
slaves on the bus or buses we are testing are 
black boxed and replaced with active verification 
models. This is only required for certain 
testbenches, so this information forms part of 
the testbench specific working topology.  

As well as reducing the number of separate 
testbenches that need to be created for an SoC, 
the working topology also improves the 
performance of the testbench by allowing us to 
remove surplus HDL and verification 
components. This also reduces the number of 
licenses required for a simulation. 

Of course, the overall topology seen by a 
simulation does not just include the design. 
Testbench components also form part of the 
topology. For instance, if your SoC is designed to 
be a slave on an AHB bus, then your testbench 
will need to have a model of an AHB bus and an 
AHB master as well. The eVC has to know about 
these so it can control stimuli generation from 
the master, implement a scoreboard between 
the master and the SoC slave interface, generate 
the coverage groups, etc. We therefore split the 
idea of a topology into a design and environment 
component. The eVC itself makes no distinction 
between these - it just sees a large SoC 
connected to other components, but the topology 
information is captured separately to allow easy 
reuse of the eVC in different testbenches.  
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Figure 1 shows an example topology for a 
design. This simple SoC has two buses with 
different protocols, two primary masters (CPU 
and DMA), and both the DMA and the Bridge 
components have multiple bus interfaces. All of 
this information is given to the eVC so it can build 
its view of the design. 
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Figure Figure Figure Figure 1111: The design topology: The design topology: The design topology: The design topology    

In Figure 2, we can see an example of the 
working topology in action. This working topology 
is for a bus infrastructure test of the AHB bus 
sub-system. The entire APB bus is removed from 
the topology, and all of the masters and slaves 
on the AHB bus are black boxed in the RTL. The 
SoC eVC instantiates active agents on the AHB 
bus interfaces to inject random transactions and 
responses. 
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Figure Figure Figure Figure 2222: The working topology for bus : The working topology for bus : The working topology for bus : The working topology for bus 
infrastructure testing of the AHB subinfrastructure testing of the AHB subinfrastructure testing of the AHB subinfrastructure testing of the AHB sub----systemsystemsystemsystem    

Figure 3 shows a more complex example of a 
working topology. This one has been set up to do 
a use-case performance analysis. The DMA 
controller transfers data from the memory to the 
Crypto unit and then from there to the UART for 
off-chip transmission. The transfer is controlled 
by interrupts. Both subsystems are needed for 
this (the AHB and the APB), and the RTL for the 
DMA, the bridge, the IRQ and the UART are 
needed, so they are included in the working 
topology (they are not black boxed). The master 
and slave interfaces of these components have 
passive agents instantiated to allow us to 
monitor the bus traffic and to do functional 
coverage.  
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Figure Figure Figure Figure 3333: The working topology for a specific use: The working topology for a specific use: The working topology for a specific use: The working topology for a specific use----
casecasecasecase    

The Crypto component is treated differently. 
We want to include its functionality in this 
simulation, but we don’t want the speed 
penalty of letting the RTL perform the 
functionality. What we have done here is to 
black box the RTL for the Crypto component, 
and load up an eVC in active mode to get its 
functionality at a behavioural level [1].  

Topology Database 

Most of the above information is stored in a 
database in the eVC, called the Topology 
Database, which forms the heart of the eVC. 
Almost everything else in the eVC either uses or 
supports the database. The information in the 
database forms a graph which tells us what 
“things” have in the design, what attributes 
these “things” support, and how these “things” 
are linked to each other. “Things” are either 
buses, components or bus interfaces. 

Buses form the communication channels in the 
database. The database contains a list of bus 
descriptors, and each descriptor contains 
information such as the name of the bus, its 
protocol, whether it is multi-layer or not, its 
routing table if it is, a list of components 
attached to the bus, whether it is black boxed 

and the protocol features the bus doesn’t 
support. Each bus entry has an associated bus 
eVC instantiated in the testbench (assuming it is 
in the working topology). 

Components are used to group bus interfaces 
together. The database contains a list of 
component descriptors, and each descriptor 
contains information such as the name of the 
component, whether it represents a peripheral or 
a bridge, a list of all the bus interfaces the 
component has, and whether it is black boxed. 

Bus interfaces are the main element in the 
Topology Database. A bus interface entry must 
be part of a component, and it describes one of 
the component’s bus interfaces. These can 
currently be masters or slaves. A component can 
have many bus interfaces on many different 
buses. Each bus interface entry has an 
associated agent instantiated in the testbench 
(assuming it is in the working topology). A bus 
interface entry contains information such as its 
name, the kind of interface (master or slave), the 
name and protocol of the bus it connects, the 
features of the protocol that it doesn’t support, 
and whether it is black boxed. 

Slave bus interfaces store the slave’s address 
ranges, and master entries store the register 
sequence driver for the master. Specific 
information relevant to the corresponding agent 
can also be stored in a protocol extension of the 
entry. 

When the eVC is ported to a new design, 
someone has to fill in the Topology Database to 
describe the structure of the design. Once this is 
done though, almost everything else, including 
certain tests, will work automatically on the new 
design. 

The APIs 

The eVC has two APIs (Application 
Programming Interfaces) which are used to both 
make the eVC easy to use and to provide a layer 
of encapsulation against changes. The Test API is 
provided exclusively for test writers. This provides 
named access to the various sequence drivers in 
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the eVC. For instance, a test writer can make the 
system CPU perform a sequence without 
knowing where the CPU is in the design, or what 
bus protocol it uses: 

do seq keeping{ 

  .driver == driver.test_api. 

         get_bus_sequence_driver(CPU); 

  // Other constraints removed for clarity 

}; 

If the SoC’s topology changes, and the CPU 
moves to another bus, or if it moves off chip, or if 
it changes bus protocol, then this test will 
continue to work without modification. As long as 
there is a master bus interface called CPU in the 
topology, no modification have to be made. A 
factory pattern is used to create the correct type 
of master sequence. 

The Topology API provides an interface to the 
Topology Database. The Topology API exports 
many different methods, some of which are 
heavily used by the eVC itself, and some of which 
are of great use to test writers. The Topology API 
is extendable, so new methods can be added as 
required. Some examples of methods are: 

■ get_active_flagget_active_flagget_active_flagget_active_flag: This method tells you whether 
a bus interface is active of passive 

■ get_address_for_slaveget_address_for_slaveget_address_for_slaveget_address_for_slave: This method returns a 
random address belonging to the named slave 

■ is_bus_interface_black_boxedis_bus_interface_black_boxedis_bus_interface_black_boxedis_bus_interface_black_boxed: This method 
returns TRUE if the specified bus interface is 
black boxed 

■ get_all_reachable_get_all_reachable_get_all_reachable_get_all_reachable_slavesslavesslavesslaves: This method returns 
all slave that can be reached by the specified 
master bus interface. This method searches 
through bridges, so it returns every slave in 
the entire topology that can be reached by this 
master. Routing tables on multi-layer buses 
are also taken into consideration. Complex 
filters can be applied to restrict the results to 
slaves that meet certain criteria, such as “only 
return black boxed slaves on buses with the 
AHB and AXI protocols” 

Bus Protocol Limitations 

One other thing that the eVC needs to know 
about is to what degree the buses and bus 
interfaces in the design implement their bus 
protocols. For example, there is normally not 
much reason for the CPU instruction interface to 
support write accesses. You’ll find that certain 
masters in the design can only generate 32-bit 
transfers or bursts of a certain type, and that 
slaves do not support responses other than OK 
or ERROR. These limitations may just apply to 
individual bus interfaces, or they may apply to 
the entire bus.  

The user of the eVC can capture this 
information when he defines the topology of the 
design. The information is stored using the types 
that the underlying bus eVCs will use.  

The eVC 

 NNNNOW WE KNOW WHAT INFOOW WE KNOW WHAT INFOOW WE KNOW WHAT INFOOW WE KNOW WHAT INFORMATION THE ERMATION THE ERMATION THE ERMATION THE EVCVCVCVC HAS HAS HAS HAS 
about the design and testbench, what does it do 
with this information?  Well, it does quite a lot 
actually: 

■ It automatically instantiates and configures 
the eVCs needed to verify the design 

■ It automatically creates and connects the 
scoreboards required for bus infrastructure 
testing 

■ It creates the functional coverage required for 
bus infrastructure testing, taking the protocol 
limitations and design connectivity into 
account 

■ It controls the random bus traffic generated, 
taking the protocol limitations and design 
connectivity into account 

■ It uses the information to verify the design’s 
bus infrastructure 

■ It sets up the register and memory maps for 
the design 

These are all tasks that are otherwise time 
consuming and cause problems when the design 
changes. 
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Scoreboards 

The SoC eVC provides automatic scoreboarding 
for all bus traffic. To reduce the complexity of the 
code required, the eVC uses a simple segmented 
point-to-point scoreboard structure as shown in 
Figure 4. The transfer between a master and a 
slave is broken down into its individual 
segments, where each segment is a single bus or 
a bridge. The overall transfer is therefore treated 
as a series of smaller transfers, which keeps the 
code complexity down and makes it easy to 
pinpoint where a transfer is failing.  

For each master on a bus, the eVC works out 
which slaves on the bus that the master can 
communicate with and creates a scoreboard for 
each path. For example, if a master can 
communicate with three slaves on its bus, the 
master will have three scoreboards - one going to 
each slave. The eVC also identifies bridges and 
adds a special scoreboard across the bridge that 
checks traffic across the bridge. Using this 
scheme, simple scoreboards can be used to 
check that any access from any master to any 
slave is correct. 
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Figure Figure Figure Figure 4444: The scoreboard structure: The scoreboard structure: The scoreboard structure: The scoreboard structure    

Functional Coverage  

In order to have coverage definitions that 
match the design, we do not use the coverage 
supplied with the bus eVCs. Instead, we define 

our own coverage groups which are similar to the 
original coverage but with modifications to make 
things easier for the rest of the eVC.  

As discussed earlier, each master and slave 
bus interface can have protocol limitations which 
means that they will have coverage holes if the 
default coverage is used. There are also 
limitations on the slaves a master can reach. 
This may be because the slave is on a completely 
independent bus system, or that the routing 
table on a multi-layer specifies that the master 
can’t see the slave. 

Whatever the reason, we need to create 
individual coverage groups for each bus interface 
in the design. In the e language, coverage groups 
must be valid at compile time which is before the 
Topology Database has been initialised. We deal 
with this by having the eVC operate in a special 
mode where it uses the Topology Database to 
write out the customised coverage files. These 
can then be loaded by a later simulation.  

Intra-bus Traffic Generation 

It would normally be easy to generate bus 
traffic in an SoC. Black box the master or slave, 
attach an active interface agent (an AHB master, 
an APB slave, etc) and let it generate random 
transactions. Most agents do this by default, so 
what can we offer here? 

Well, we can offer several things. The eVC 
supplies default master and slave sequences 
that take the topology of the design into account, 
which is essential on buses with a routing table. 
On many designs, just being a master on a bus 
doesn’t let you see all of its slaves.  

The eVC also takes the bus protocol limitations 
into account. If you told the eVC that your CPU 
instruction interface cannot performs writes, 
then you don’t particularly want the default 
master sequence randomly generating writes. If 
your AHB bus doesn’t support SPLIT responses, 
then you don’t want to see these either. Due to 
the nature of the bus eVCs we have used, and 
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their desire to be really helpful2, it can actually 
be quite difficult to stop them doing certain 
things. 

One other feature provided by default is that 
the eVC will bias the default transaction 
generation towards hard to reach areas that we 
define in the eVC’s functional coverage [3]. For 
example, many bus master sequences will 
generate random transfers that are bounded by 
the user-supplied minimum and maximum 
addresses. For functional coverage, we split each 
address segment into four sections - base 
address, lower range, upper range and top 
address. The lower and upper ranges are really 
easy to hit during simulations.  

Without our biasing, hitting the lower address 
of a slave address range was a rare occurrence, 
and after running 1 million bus bursts (each 
burst accessed multiple addresses) we never 
once hit any of the upper addresses.  

Bus Infrastructure and Interconnect Testing 

Bus infrastructure and interconnect testing are 
fairly identical on every design. Or at least, they 
are once you know what the eVC knows. Tucked 
away in its Topology Database it knows the entire 
bus connectivity of the design and all protocol 
limitations. It knows the number of address 
ranges each slave has and the bounding 
addresses of each. It knows which of these 
address ranges can be accessed randomly 
without side effects, and which ones are unsafe 
to do so. It knows which bus interfaces have not 
been black boxed and can omit them from 
random testing.  

                                                           

2 The helpfulness of some commercial eVC writers has in fact 
been the biggest problem we have had to overcome to create 
this eVC. In their desire to be super helpful, many have made 
it almost impossible to use their eVCs in a flexible manner. 
For instance, while defining slave memory maps through 
macros is nice, it also prevents you doing it programmatically, 
and causes people to create inflexible verification 
environments.  

The default bus infrastructure sequence 
shipped with the eVC can be congigured as 
follows: 

■ Number of pathsNumber of pathsNumber of pathsNumber of paths:::: A path is a master to slave 
transaction, which may be a burst 

■ NuNuNuNumber of threadsmber of threadsmber of threadsmber of threads::::  This controls how many 
paths will be run in parallel. Each thread will 
run the full number of paths. So if you specify 
100 paths and 10 threads that the eVC will do 
1000 paths in total    

And that’s it. From here, the sequence will 
automatically deal with everything else. If you 
move it to a new working topology, it will work. If 
you move it to a new design, it will continue to 
work. If you change bus protocols, add new bus 
interfaces or bus limitations, it will continue to 
work without modification.  

Code Sample 1 shows the bus infrastructure 
test required for any bus based SoC. This will 
generate random traffic between 20,000 master 
and slave combinations, running four masters in 
parallel. Of course, custom reset and 
initialisation sequences will also have to be 
added. 
<' 

extend MAIN vlb_soc_virtual_sequence {  

 !bus_inf: PARALLEL_RANDOM_BUS_TRAFFIC 

                vlb_soc_virtual_sequence; 

    

 body() @driver.clock is {  

  do bus_inf keeping{ 

   .number_of_paths   == 5000; 

   .number_of_threads == 4; 

  }; 

 }; 

}; 

'> 

Code Sample Code Sample Code Sample Code Sample 1111: The bus infrastructure test for : The bus infrastructure test for : The bus infrastructure test for : The bus infrastructure test for 
any bus based SoCany bus based SoCany bus based SoCany bus based SoC    

Example Topology 

 AAAALL A USER NEEDS TO DLL A USER NEEDS TO DLL A USER NEEDS TO DLL A USER NEEDS TO DO TO USE THE EO TO USE THE EO TO USE THE EO TO USE THE EVCVCVCVC ON THEIR ON THEIR ON THEIR ON THEIR 
project us to define the topology of the design 
and testbench. These topologies are stored 
separately, but they are done identically, so we 
will not make any further distinction here. The 
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following code samples are taken from a real 
topology definition.   

#ifdef USE_SUBSYSTEM_MAIN_BUS{ 1 
  add bus { 

    name        : AHBM; 

    protocol    : AHB; 

    multi-layer : TRUE; 

  

2 

     <limitations>; 

       add size : TWO_WORDS; 

       add size : FOUR_WORDS; 

       add size : EIGHT_WORDS; 

       add size : SIXTEEN_WORDS; 

       add size : K_BITS; 

 

       // Do not allow splits or 

       // retries on this bus 

       add slave_responses : RETRY; 

       add slave_responses : SPLIT; 

     </limitations>; 

   }; 

3 

 // Instantiate the bus eVC 

 ahb bus MAIN_BUS "rst_n" "clk" "";  

}; 

 

4 

    Code Sample Code Sample Code Sample Code Sample 2222: Adding a bus to the topology: Adding a bus to the topology: Adding a bus to the topology: Adding a bus to the topology    

Code Sample 2 shows how to add a bus to the 
topology. Points 2 and 3 add the bus entry to the 
Topology Database and point 4 instantiates the 
third party bus eVC. In this case, it is the AHB 
eVC from Cadence. This particular AHB bus 
doesn’t support transfers wider that 32 bits, retry 
responses or split responses. This is specified at 
point 3. The code at point 1 is used to control the 
working topology. If the user specifies that the 
MAIN_BUS subsystem is not to be used, then this 
bus will not be added to the topology. 

#ifdef USE_SUBSYSTEM_MAIN_BUS{  
  add component_new{ 

    name : CPU; 

    kind : PERIPHERAL; 

  }; 

1 

};  

Code Sample Code Sample Code Sample Code Sample 3333: Adding a component : Adding a component : Adding a component : Adding a component to the to the to the to the 
topologytopologytopologytopology    

Code Sample 3 adds a component to the 
topology. It does this at point 1. There isn’t much 
else to do with a component, although you may 
chose to load a third party eVC from here.  

In Code Sample 4 below we add a master bus 
interface to the Topology Database. This is the 
master interface for the CPU component defined 
in Code Sample 3. The bus interface entry is 
added at 1, and the interface agent is added at 
2. One task we leave for the user is to define the 
signal map for each agent. This, unfortunately, 
can’t be automated.  

In fact, automating this from the same 
description used to generate the design itself 
would be a bad idea. If a signal was missed from 
the common connectivity definition, the 
testbench would necessarily find the bug, 
because it would not expect the signal to exist. 

#ifdef USE_SUBSYSTEM_MAIN_BUS{   
  add master bus_interface_new{ 

    name     : CPU_IF; 

    component: CPU; 

    bus      : MAIN_BUS; 

    protocol : AHB; 

    <limitations>; 

      set no_lock       : TRUE; 

      add transfer_kind : BUSY; 

    </limitations>;  

  }; 

1 

  

 // Instantiate the Master agent   

 ahb master vlb_soc_main_bus_u CPU_IF  

                0 FALSE "rst_n" "clk"; 

     

 // Connect up the master 

 extend CPU_IF VLB_SOC  

             vr_ahb_master_signal_map { 

  // Signal connects removed  

  // for clarity 

 }; 

};  

2 

Code Sample Code Sample Code Sample Code Sample 4444: Adding a bus interface to the : Adding a bus interface to the : Adding a bus interface to the : Adding a bus interface to the 
topologytopologytopologytopology    

The last code we need to show is the code 
required to define the working topology for a 
testbench. This is specified in a text file and 
processed by a Perl script. The output of this 
script is an e file with #defines and an e file to 
configure the active flags in the Topology 
Database. 
<use> 

 AHB    t // Use the AHB eVC 

 CIPHER f // Don't use the GPRS eVC 

</use> 
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<subsystem> 

 MAIN_BUS t // Include the MAIN_BUS 

            // subsystem 

 SECURITY f // Don't include the 

            // SECURITY subsystem 

</subsystem> 

 

 

<black_box> 

 bus f MAIN_BUS; // Don't black box the 

                 // MAIN_BUS 

 bus t SEC_BUS;  // Black box the 

                 // Security bus 

 com t CPU;      // Black box the CPU 

                 // component 

 bif t CPU_IF;   // Black box the CPU's 

                 // master interface 

                 // Other entries removed 

</black_box> 

 

Code Sample Code Sample Code Sample Code Sample 5555: Specifying a working topology: Specifying a working topology: Specifying a working topology: Specifying a working topology    

Future Work 

 TTTTHE EHE EHE EHE EVCVCVCVC AS IT EXISTS TODAY  AS IT EXISTS TODAY  AS IT EXISTS TODAY  AS IT EXISTS TODAY SATISFIES ALL THESATISFIES ALL THESATISFIES ALL THESATISFIES ALL THE 
uses our customer currently has for it. It is being 
successfully used on several projects, and we 
are waiting until these are complete before 
planning any new features. Three candidate 
possibilities have emerged, but we are still 
looking for justification to make the changes. 

A mappiA mappiA mappiA mappinnnng layer:g layer:g layer:g layer: The eVC can encapsulate the 
architecture of the design and some of its  
capabilities, but what it’s can’t do, unless you 
define multiple topologies, is encapsulate the 
technology mapping of the design. By default, 
the eVC assumes that buses and bus interfaces 
are mapped to VHDL. If one is mapped to Verilog 
or SystemC, then this has to be specified 
somewhere, and the topology definition is the 
most obvious place. In some larger projects there 
may be the need to change this mapping for 
certain testbenches. For some, a bus interface 
may be implemented in Verilog, but for others it 
might be in SystemC for performance reasons. In 
other testbenches it may be on a hardware 
accelerator.     

Port to other languagesPort to other languagesPort to other languagesPort to other languages:::: The eVC is in e, but 
there are no reasons why it couldn’t be written in 
Vera or SystemVerilog. However, there are 
currently no requirements for this. 

Alignment with SPIRIT:Alignment with SPIRIT:Alignment with SPIRIT:Alignment with SPIRIT:  The SPIRIT consortium 
[5] are attempting to ease the use of IP by 
developing an XML standard for describing the 
physical attributes of the IP. These descriptions 
can be brought together to form a description of 
the overall design, which can then be processed 
by a set of custom tools. The current release 
(1.0) does not contain enough information to 
generate a testbench as we have done, but there 
is a verification working group looking into this. 
As our eVC is already synergistic with the existing 
SPIRIT approach, we would consider full 
alignment an obvious approach. This of course 
will depend on SPIRIT supporting all of the 
features that we need, and our customer 
supporting SPIRIT. 

Conclusions 

 OOOOUR GENERIC UR GENERIC UR GENERIC UR GENERIC SSSSOOOOCCCC E E E EVCVCVCVC BRINGS REAL COST  BRINGS REAL COST  BRINGS REAL COST  BRINGS REAL COST ANDANDANDAND 
time savings to verification projects. Even on 
large designs, we can run the first tests within 
days of receiving the RTL for the bus 
infrastructure. On the latest design, we went 
from receiving the specification to 100% 
functional coverage for the bus infrastructure 
tests in just 4 days, which included waiting for 
critical RTL fixes. Because the eVC is designed to 
deal with change, the design can subsequently 
arrive in stages without having any significant 
impact on the verification. 

No real knowledge of e is required to use the 
eVC, because the topology definition and control 
is mainly macro based. Users don’t need to know 
how to instantiate the eVCs required for the 
busses, how to deal with their strange and 
unexpected behaviours, or how to set up the 
design’s address maps. No complex 
programming is required [1], team members 
don’t need to know the eRM or other coding 
techniques, and good encapsulation is provided 
by default.  

By severely reducing the time it takes to set up 
a project’s verification environment, the number 
of verification engineers it needs, and the skill 
level of those engineers, projects using this eVC 
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can reduce their costs and increase their 
chances of taping out their designs on schedule.  

Related Work 

 WWWWE ARE NOT THE FIRST E ARE NOT THE FIRST E ARE NOT THE FIRST E ARE NOT THE FIRST PEOPLE TO TRY AND EAPEOPLE TO TRY AND EAPEOPLE TO TRY AND EAPEOPLE TO TRY AND EASESESESE 
verification by letting users specify the design at 
a high level and then automatically generating a 
testbench.  

The X-Gen tool [4] is intended to replace the e, 
Vera and SystemVerilog languages. Users 
describe the components, the interconnectivity 
and the transactions between the components, 
and the tool will generate random stimuli for the 
design. Self checking and functional coverage 
have to be provided by other means. As it is not a 
standard language, it doesn’t appear to be 
possible to make use of existing verification IP.  

Beach Solutions sell two commercial tools that 
take a central description of the design and 
automatically generate a verification 
environment. These both appear to be aimed at 
generating register tests, but will also instantiate 
the AHB eVC from Cadence. It is unclear if the 
resulting environment can be manually extended 
while maintaining the ability to be automatically 
regenerated. 

The SPIRIT consortium, of which Beach 
Solutions is a founding member, is working on 
extending their XML schema to include 
information needed to generate testbenches for 
a design. As discussed in “Future Work”, we will 
look at aligning with SPIRIT when it becomes 
publicly available. 

Terminology 

BusBusBusBus:::: a communication channel that connects 
masters to slaves. This would normally consist of 
multiple signals, but a point-to-point wire 
connection also qualifies. A bus would typically 
have a non-trivial protocol. 

Component:Component:Component:Component: an object in the design, 
components are also known as blocks or  
modules.  

Bus Interface: Bus Interface: Bus Interface: Bus Interface: the interface between a 
component and a bus. A component can have 
one or more bus interfaces. For instance, a DMA 
component may have a slave bus interface for 
configuration, and two master interfaces per 
DMA channel. 

Bus eVC:Bus eVC:Bus eVC:Bus eVC: An eVC that can monitor and model a 
bus. An eVC that provides agents for AHB 
masters, slaves, decoders and arbiters is an 
example of a bus eVC.    
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