
1

First we will take a brief look at the conventional use of randomization to generate constrained
stimulus. That raises an interesting question about how to randomize only a subset of a class's
variables, something that can occasionally be rather useful.

We will then move on to see how the constraint solver can be used to "reverse engineer" some
unknown parts of an object, given the known values of some other parts. We will also examine how
the solver can be used to check an object for legality, using constraints to express validity rules.

Finally we'll take a look at other unusual applications of the constraint solver, and introduce the useful
new "soft constraints" feature that was added in SystemVerilog-2012 and is already fully supported by
VCS.

2

3

For sure, everyone at SNUG is aware that constrained random stimulus generation is one of the
cornerstones of modern coverage-driven verification methodology. We use constraints to express
restrictions, relationships, and statistical distributions that we wish to enforce on the data members of
a class (randomization and constraints generally work best in the context of classes, although you can
use them on non-class variables too). Generally the constraint solver will generate a set of values (a
solution) that satisfies all your constraints, although there's a gotcha if you try to use std::randomize
(scope randomization) instead of class-based object randomization.

For the first part of this presentation we'll use a simple data class, with lots of features missing to save
time and space!

4

Here's our example data class. Like everyone else, we use a network message packet example - with
lots of features absent! The class will probably be extended from some base class such as
uvm_sequence_item, but that doesn't really concern us here.

click
Here's the real, physical packet data that will appear on the DUT pins or the network data stream. We
have a control byte that specifies the payload length, a 4-byte address (think IPv4), and a variable-
length payload that may even have zero bytes in it. All these data members are declared rand so that
they can be randomized if we so wish.

click
Our class, being part of a verification environment, also has some non-physical information (often
called metadata) that can be used in various ways by the testbench to reflect interesting properties of
the object. It does not appear on the physical DUT pins or data stream, but is closely linked to the real
data. These values, like the physical values, are declared rand so that we can manipulate them using
the constraint solver.

click
Finally, we need some constraints to control randomization. Constraints have names; we've used the
common (but of course optional) conventions of using a c_ prefix to highlight their purpose and avoid
collisions with variable names.

5

In the above example, there are two constraint members, named c_payload_length and
c_address_kind.

 Note that we have avoided using implication constraints (which are of the form expr1 -> expr2) in
the c_address_kind constraint because addr[0]==255 would be a valid solution even if
addr_kind!=BROADCAST
Instead, we use an "if and only if" constraint, expr1 == expr2.

6

When you use this object, you are free to add further constraints in a with block. Here we attempt to
use this to create an illegal packet that violates the rule relating the payload length to the control
value. However, the constraint solver won't allow us to do this! Because there is a contradiction
between the two constraints, the solver refuses to update any of the rand data members, and returns
zero. We can capture this error code in a variable, as shown here.

7

We've often seen it suggested that you should assert that randomization succeeds, as shown here. I'm
ashamed to say that I have even recommended it myself in the past. But this is a bad idea!

click
Assertions can be completely disabled by tool command options or by system calls such as $assertoff.
If you do this to an immediate assertion, the expression it tests is never evaluated so the
randomization doesn't happen at all!

click
Instead, capture the randomization success code in a variable (bit, reg, int - anything will do!). You can
then use an assertion, if you wish, to throw the error message - it's a great way to get a clear,
comprehensive diagnostic.

8

Let's return to the problem of how to subvert the existing constraints to create an illegal set of values.

The first randomize call creates a packet with control==3 and 3 bytes of payload. Now let's try to mess
with the control value alone. We can do this by using std::randomize instead of object randomization -
it ignores all your class's constraints, so we can do anything we like by applying our own constraints.
However, this doesn't work because VCS doesn't support calling std::randomize() on a class member.
An alternative approach might be to supply the name of the single variable you want to randomize -
control - as an argument to class randomize; we'll be saying much more about that later. But this
doesn't work, because all the constraints are still active. You can disable some or all constraints using
constraint_mode, but that's quite unpleasant - it's far too easy to leave them disabled by mistake, and
with a complex constraint set it can be very hard to know exactly which constraints to switch off and
which to leave active.

9

The ability to specify a subset of a class's variables, as arguments to the object's randomize call, is very
useful for other reasons.

The first randomization will give us a packet with IP address either 192.168.x.x or 10.0.x.x, with a
control byte in the range 0..127, and a random payload of that length. But suppose we now wish to
create several more packets with exactly the same address, but with a different payload. Repeating
the same constraints is not sufficient, because although every transaction's IP address will meet the
constraints, they will all be given different random addresses.

Instead, we can ask the solver to randomize only the control and payload values. It will still respect all
the constraints, but it leaves the address value unaffected.

10

