"Learn todo Verification with AOP?

WEe'vejust learned OOP!"

Dr David Robinson, Jason Sprott, Gordon Allan
Verilab Ltd.

david.robinson@verilab.com, jason.sprott@verilab.com,

gordon.adlan@verilab.com

ABSTRACT: Recent versons of Vera contain language structures to support Aspect Oriented
Programming (AOP), ardatively new software paradigm devel oped to solve some of the perceived
shortcomings of Object Oriented Programming (OOP). This paper provides an introduction to
AORP that will smplify its adoption for verification engineers with OOP experience. We make the
case for usng AOP in Veratestbench designs, by showing several common testbench scenarios that
are not easy to solve usng OOP techniques done. We show how the use of AOP can ease the
creation, maintenance and reuse of testbenches. We aso discuss some of the problems that can be

introduced if AOP is misused.

1 Introduction

Recent developments in verification languages have required many verification engineers to learn the
Object Oriented Programming (OOP) paradigm. For many, this learning process may not be quite
finished. The latest release of Vera (6.2) supports Aspect Oriented Programming (AOP), a
relatively new software design paradigm that attempts to address some of the perceived
shortcomings of OOP. This paper is an introduction to AOP for verification engineers with OOP

experience. It does so by answering some questions an OOP designer may have:
"What is AOP?'
"What would | use AOP for?!
"Can | useit with OOP?'
"How do | useit in my testbench?"

AOP introduces some new concepts, such as "aspects', "concerns’, "cross-cuts', "advice' and
"introduction” that may seem initidly confusng. Unfortunately, unlike OOP, AOP principles are far
less likely to be understood by locd software experts; AOP is gill new even in the software world.
The first reaction on exposure to these concepts is typicdly "what do they do?' and the second is
"why would | want to do that?'. Both points will be covered in later sections. Once we have
explained the basic concepts of AOP, we turn our attention to their use in actua testbenches.

This paper contains 5 further sections. In section 2, we make the case for AOP, showing severa
common testbench scenarios that cannot be easily solved using OOP techniques done. In section 3,
we introduce the concepts behind AOP, using OOP congtructs wherever possible, to explain ther

behaviour.

Section 4 revidits the scenarios introduced in section 2, and shows how the new AOP techniques
work in conjunction with existing OOP techniques to remove the previoudy identified deficiencies,

Issues relating to the crestion, maintenance and reuse of testbenches will be explored.

SNUG Europe 2004 "Learnto do Verification with AOP? We've just |learned OOP!"

In section 5 we discuss some of the potentid problems that can be introduced if AOP is misused.

Our conclusions are presented in section 6.

2 "I know OOP, why do | need AOP?"

OOP has been used in many projects, and most OOP prectitioners are satisfied with its ability to
decompose a problem into interacting objects, each of which should handle a sngle functiond
concernt. This "separation of concerns' alows the OOP designer to encapsulate dl the code
deding with a particular concern in one place. This divides the sze of the design problem the
designer has to ded with a any one time, easing the maintenance overhead of the desgn, and
increasing the reuse potential of each object. However, after gaining experience in OOP, it gartsto
become clear that something is wrong. Even when a problem is decomposed into its separate
concerns, testbench designers Hill have to concentrate on many different concerns at once,
testbench maintenance has not become trivial, and smple-and-widespread class reuse has remained

dusve[2]. Weusethe codein Figure 1 to show why OOP is not ddivering on dl of its promises.

This code represents a single task from aclass that is used to manage a DMA controller. The DMA
controller has a number of channels, and the configuration of a channd is specified in an object of
type DMATransactionClass. The testbench can configure the DMA controller using an AHB bus
functiond modd (BFM), which is referenced through the m_ahbBfm variable in the code.
Simulation output is achieved through a variable of type LoggerClass, cdled m log. Identifiers
beginning with m_ are loca class variables, and identifiers in dl upper case are condant vaues
defined e sewhere in the program.

L A concern can be loosely defined as a concept, goal or purpose [1]

SNUG Europe 2004 "Learnto do Verification with AOP? We've just |learned OOP!"

1) task DMAManagenent Cl ass: : enabl eChannel (i nt eger channel Nunber,
DMATr ansacti onCl ass transaction){
2) i f(m_enabl eExecutionTrace == 1){
3) m | og. | og(SEV_TRACE_DEBUG,
psprintf("Entered DVMAManagenent Cl ass: : enabl eChannel at
time %9d ns", get_time(LO)));

4) m | og. | og(SEV_TRACE_DEBUG, psprintf("...Channel Number = 9%©d",
channel Nunber));

5) m | og. | og(SEV_TRACE_DEBUG, psprintf("...Transaction:"));

6) transaction. di splay();

7) }

8) i f (channel Nunber < 0 || channel Nunber > NUMBER_OF CHANNELS - 1){

9) m | og. | og(SEV_FATAL, psprintf (" DMAManagenent Cl ass: : enabl eChannel

%0d is not a valid channel nunber",
channel Nunber));

10) }

11) if(transaction == null){

12) m | og. | og(SEV_FATAL, "DMAManagenent Cl ass: : enabl eChannel
Transaction is null");

13) 1}

14) /1l Get access to the BFM
15) voi d = semaphore_get (WAI' T, m ahbBf m get Semaphorel D(), 1);

16) /1 Enabl e the channel
17) m_channel Enabl es[channel Nunber] = transacti on. get Channel Enabl e();
18) m_ahbBf m wri t e(CHANNEL_ENABLE_ADDR, m channel Enabl es);

19) /'l Rel ease the BFM
20) semaphor e_put (m_ahbBf m get Semaphorel D(), 1);

21) i f(m_enabl eExecutionTrace == 1){
22) m | og. | og(SEV_TRACE_DEBUG, psprintf("Exiting
DMAManagemrent Cl ass: : enabl eChannel at time %9d ns", get_time(LO));
23) }
24) }

Figure1l: Example of atypical class method

In an idedl world, the task in Figure 1 would only concern itsdlf with enabling the specified DMA
channd, but we can see that in ared system, it has more work to do. In this example, the mgority

of the code dedls with the following non-DMA related issues.

Program-execution trace. This requires every method in the design to:

SNUG Europe 2004 "Learnto do Verification with AOP? We've just |learned OOP!"

0 log when it was entered (line 3), and what its parameters were, if rdlevant (lines 4

and 5)

0 log when it exited (line 22), and what its return value was, if relevant (not shown in

this example)

0 do none of the above if the functiondity was switched off for performance reasons
(lines2 and 21)

Precondition checking. Every method in the design mudt:
0 check that itsinputs are vaid before usng them (lines 8 to 13)
0 ded with errorsin a condgstent manner (lines9 to 12)
Resource access. Every method in the design ng this resource must:
o wait until it can get access to the BFM before enabling the channd (line 15)
0 relessethe BFM when it hasfinished usng it (line 20)

Infact, only two lines (17 and 18) in Figure 1 ded with the intended functional concern of the task.
Thisis caled adominant concern [1], and is made so by the designer; he could have chosen one of
the other concernsto be dominant. It isthe dominant concerns that impose a structure on the object
hierarchy. The remaining lines are there to implement other concerns: the program-execution trace,
the precondition checking and the resource access management. These three concerns are essentia
to the overall operation of the testbench, but they are irrdlevant to the dominant concern of the task -
enabling a DMA channd. However, there is no mechanism in OOP that alows these concerns to

be separated from each other and encapsulated.

Two or more concerns are known as cross-cutting if their code cannot be neetly separated from

each other. We do not typicaly refer to the dominant concern of an object as a cross-cutting

SNUG Europe 2004 "Learnto do Verification with AOP? We've just |learned OOP!"

concern, but instead apply the phrase to those concerns that cut acrossit. Two symptoms of cross-
cutting concerns are code-tangling and code-scattering [2]. The former is where the code for
multiple concerns is tangled together, forcing an object to ded with multiple concerns smultaneoudly,
and the latter is where the code for a particular concern (say, resource access) appears in multiple

placesin the design.

Returning again to the code in Figure 1, consider the potentia problems that exist with the cross-

cutting concerns.
They prevent reuse:

0 The DMAManagementClass cannot be reused in another testbench that does not
implement program-execution trace, precondition checking and resource access in

exactly the same way asin this testbench
They make it easy to introduce bugs.

0 The program-execution trace is a syssem-wide concern, which means that the
testbench designers have to implement it correctly in every method in the design. If
the desgner forgets to include it in a method, or for example, forgets to include the
time in the log statements, the program trace will be incomplete. If the desgner
forgets to put the enable switch around it, it will aways trace, even when it is meant
to be switched off.

0 The precondition checking has to be done for every method that takes in a
parameter that should be checked. If the designer of a task forgets to check, or
uses the wrong bounds to check againgt, bugs can occur due to incorrect data being
used by the testbench

SNUG Europe 2004 "Learnto do Verification with AOP? We've just |learned OOP!"

0 The resource access concern will be duplicated within other methods in the class,
and possbly in other classes. If done incorrectly in one of these, or left out

completely, the whole scheme is rendered incorrect
They complicate maintenance of the testbench:

o If thetrace information content or format needs to be changed, then every method in
the design has to be visited and updated. If another check is required for a certain
datatype, then every method in the design that takes a parameter of that type has to
be vidsted and updated. If the resource access scheme has to change, then every

method in the design that accesses that resource has to be visited and updated.

It is these cross-cutting concerns that are a problem in OOP. The paradigm does not offer a neat
solution to ded with those concerns that cannot be completely encapsulated from al other concerns
within the design. Non-locdised concerns end up being tangled in with the nicdy encgpsulated
code, in an ad hoc manner. While experienced OOP practitioners can minimise the problems
introduced by these cross-cutting concerns (e.g. by using design patterns [2]), they are hard to
eradicate completdly.

3 "OK, what isAOP?"

AOP is a new desgn paradigm that alows cross-cutting concerns to be separated and
encapsulated. Dominant concerns are coded using OOP techniques as before, and new constructs
are used to code the cross-cutting concerns and integrate them with the dominant concerns. Rather
than explain dl of the concepts in AOP, we will limit oursalves to the subset actudly supported by

the current version of Vera

Join Point: A join point is awdl defined point in the flow of a program [1] that can be used to
reintegrate cross-cutting concerns. Method calls are the only join points supported by Vera

SNUG Europe 2004 "Learnto do Verification with AOP? We've just |learned OOP!"

Advice: Vera code that is to be executed a a join point. Three types of advice exis: before,
after and around. Before advice gets executed before the code originaly at the join point, and
after advice gets executed after the code originaly a the join point. Around advice surrounds
the code at the join point, and it is up to the advice writer to decide when, if ever, to cal the
origina code using the new proceed keyword. Advice can be emulated in OOP by extending the
class and overriding the method {oin point). Before, after and around just depend on the
placement of super.method() in relation to the new code.

task MyExtendedd ass::foo(){ Before Advice
printf("Before Advice\n");

super.foo();

}

task MyExtendedCl ass: : foo(){ After Advice
super . foo();
printf("After Advice\n");

}

task MyExt endedCl ass: : foo() { Around Advice
printf("Around Advice (before join point)\n");
super.foo(); // Optional
printf("Around Advice (after join point)\n");

}

Figure 2: Different types of advice emulated in OOP

Although OOP can be used to emulate advice, it cannot match al of its capabilities. For instance, if
the OOP code had a handle to the base class of MyExtendedClass, and the origina foo method
was not virtud, then the origind foo method will get cdled, and not the new method. Another
limitation is that you cannot emulate advice on loca methods.

I ntroduction: introductions in AOP introduce new members into a class, where a member can
be atask, a function, a variable, a congtraint definition or a coverage definition. Like advice, this
can be emulated using OOP smply be extending the class with the new members. However, there

are some limitations that prevent OOP emulating dl of the functiondity of AOP introduction. In

SNUG Europe 2004 "Learnto do Verification with AOP? We've just |learned OOP!"

OOP, new members that need to reference an exigting locd member cannot do s, and existing

members cannot access any introduced members. Both of these are possible in AOP.

Aspect: An aspect is the AOP equivaent of an object. That is, it is the basic unit of encagpsulation.
An aspect modifies a Sngle named-class, and contains the advice and/or introductions thet will
modify that class. A class can have more than one aspect attached, but an aspect cannot modify
more than one class. This means that multi-class cross-cuts cannot be encapsulated in one aspect,

but they can at least be encapsulated in one file or directory if desred.

Weaver: Theweaver is the tool that integrates the aspects with the objects. Conceptudly, it acts
like a pre-processor that takes the class, physicadly adds al introductions to the class header, and
inserts the advice code into the join points. Vera only supports static (compile time) weaving, so
dl introductions and advice apply to dl instances of aclass. That is, you cannot add an aspect to

one object and have another of the same class behave as it would without the aspect.

4 "How dol useit with OOP?"

For al verification engineers who are considering adopting AOP, the good news is that AOP works
in conjunction with OOP. It does not require engineers to completely re-skill in order to use it, and
can be gradudly introduced into projects, minimisng the chance of falure if difficulties are
encountered. This is different from switching to OOP, where an "dl or nothing" approach is
normaly required. However, reading the technicd details of a new programming paradigm and
deciding just to adopt it gradudly, are not sufficient for its successful adoption. A new practitioner
needs to know when to use the new techniques, and when not to; to know when to keep doing it
"the old way". Thisis particularly true of AOP, because it is easy to over use, and experience has
shown that this can easily create more problems than it solves (see section 5). Here, we are going
to show how to use AOP to complement OORP to creste a testbench that is of a higher quality than
can be easlly achieved through using ether technique on its own.

SNUG Europe 2004 "Learnto do Verification with AOP? We've just |learned OOP!"

As AOP works with OOP, we are going to assume an OOP based project as a starting point. It
does not redly matter if the testbench is being written from scratch, or if an exigting testbench is
being refactored to use AOP. The gpproach isthe samein each case: identify a cross-cut, and code
it as an agpect. Depending on the reason that AOP is being used, some cross-cuts may be essier to
identify than others. For ingtance, if AOP is being used to make classes more reusable, a cross-cut
that helps in code maintenance may not be identified, as the designer is focusing on other concerns.
However, if code maintenance is the god, the same aspect dealing with reuse may not be identified,
as that is not what the designer is concentrating on. Therefore, the first decision to be made when
usng AOP iswhy it is being used. Is class reuse, reduced bug potentid or code maintenance the
main god? There are other reasons, some of which will be covered, but the novice user should
initidly limit themsalves to these three. The following list will help identify areas of code where AOP
can be successfully used.

Identifying cross-cuts that improve class reuse:

0 Does the class contain any code that would prevent it being used in another
testbench?

= Doesit rdy on a testbench-wide mechanism to control behaviour? If o,

use an aspect to ded withit.

= Doesit contain code that controls access to an external resource that is used
by the class? Can you guarantee that the same access mechanism would be
used in every other testbench that might use thisclass? If not, use an aspect
to ded withit.

Identifying cross-cuts that reduce the potentia for bugs.

0 Implement pre-condition checking asan aspect. This makes it easier to ensure that

al pre-conditions are checked and handled in a consistent way.

SNUG Europe 2004 "Learnto do Verification with AOP? We've just |learned OOP!"

10

0 Doss the dass contain code common to different methods within the class, or to
other classes?

» Doesthis have to be manudly implemented in each method? If so, consider
usng an aspect. Pre-condition checking is an example of this, because each
method has to check different pre-conditions. Trace debugging is another

example.

= Are you relying on other designers (or even yoursdf) to remember to

implement it in other methods and classes? If o, consder using an aspect.

= Are you rdying on other desgners (or even yoursdlf) to implement it the

same way in other methods and classes? If so, consider using an aspect.
Identifying cross-cuts that make testbench maintenance esser:

0 Does the class contain code that, if changed, would require other methods and

classes to be changed in the same way to remain consstent? If so, use an aspect.

0 Does this code implement a policy that needs to be reviewed or enforced? Do
other methods or classes implement this policy as well? If so, use an aspect to
implement the policy, because it will be easier to review or enforceif al instances of
it are grouped in one place. For ingtance, if al trace debugging code was contained

in the same location, the logging format could be easly reviewed for consstency
Applying these questions to the code fragment presented in Figure 1 gives the following results:

Lines2to 7 and 21 to 23 ded with execution trace. Thisis controlled by a member variable caled
m_enableExecutionTrace, which has to be set to 1 for trace to occur. This is a testbench wide
control mechanism, as dl other methods in dl other classes have to interpret

m_enableExecutionTrace in the same way. These lines cause reuse problems, because they use a

SNUG Europe 2004 "Learnto do Verification with AOP? We've just |learned OOP!"

11

control mechanism which may not be present in other testbenches. The format of the trace may dso
be different in other testbenches, as a different logger, or a different debug level (other than
SEV_TRACE_DEBUG), may be used. These lines dso make bugs likely, because they must be
manualy implemented in every method in every dass in the testhbench. Failure to include execution
trace, or failure to contral it properly, would be abug. Maintenance is dso made harder because of
this code. Say the mechanism was to be changed so that there were different levels of trace debug.
Leve 0 hasno debug, level 1 just displays entry and exit, level 2 adds entry and exit times, and level
3 dso includes parameter and return vaues. Changing this would involve modifying every method in
the design; a time consuming process because the code that needs modified is not encapsulated in

the same place.

Lines 8 to 13 implement precondition checking. For ultimate safety, al methods in the desgn should
dothis. Thereis no reuse problem with these lines, because the boundaries are unlikely to changein
another testbench, and the one that does (the maximum channel number) has been encapsulated.
However, we are relying on the method's author to add the checking, and get the vaues that the
parameters are checked againgt correct. Experience shows that this is unlikely to occur for al
methods. By using an aspect to implement this functiondity, al precondition checking can be added
a alater date?, and stored in one location which will make reviews essier.

Lines 15 and 20 are used to secure access to the AHB BFM. This presents reuse problems, as
access may be handled differently in other testbenches. Access may be fredy available, or
something other than a semaphore used. These lines are dso bug prone, as the testbench relies on
every method accessing the AHB BFM to include them. Forgetting to include them in even one
method may lead to a complex debugging problem. Testbench maintenance is dso affected by
these lines of code, as they manualy implement a testbench-wide, resource-access policy that will

2 Experience al so shows that thisis also unlikely to happen, but at |east we are now in a better position to do it, or

work out how much has been done

SNUG Europe 2004 "Learnto do Verification with AOP? We've just |learned OOP!"

12

be difficult to change. By using an aspect to implement resource access, the policy can be changed

and reviewed more eesily.

Refactoring the code presented in Figure 1 as described above results in the origind code fragment
being reduced to the two lines of code shown in Figure 3.

t ask DMAManagenent Cl ass: : enabl eChannel (i nt eger channel Nunber,
DMATr ansacti onCl ass transaction){
/1 Enabl e the channel
m_channel Enabl es[channel Number] = transacti on. get Channel Enabl e();
m_ahbBf m wri t e(CHANNEL_ENABLE_ADDR, m channel Enabl es);

}

Figure 3 : Thecodefrom Figure 1 reduced to its core concern

extends trace_debug DMAManagerent Cl ass (DMAManagenent Cl ass)
dom nat es(ahb_bfm resource_access_DMAManagenent Cl ass) {

around task enabl eChannel (i nt eger channel Nunber,
DMATr ansacti onCl ass transaction){
m | og. | og(SEV_TRACE_DEBUG, psprintf("Entered
DMAManagemrent Cl ass: : enabl eChannel at tine
%9d ns", get_tinme(LO));
m | og. | og(SEV_TRACE_DEBUG, psprintf("...Channel Nunmber = %©d",
channel Nunber));

proceed; /1l Call the original task
m | og. | og(SEV_TRACE_DEBUG, psprintf("Exiting

DMAManagemrent Cl ass: : enabl eChannel at tine
%9d ns", get_tinme(LO));

Figure4: Theaspect that handlestrace debugging for the codein Figure 3

ext ends
precondi ti on_check_transacti on_DMAManagenent Cl ass(DMAManagenent Cl ass)
dom nat es(trace_debug_DMAManagenent Cl ass,
ahb_bfm resource_access_DMAManagenent Cl ass) {

SNUG Europe 2004 "Learnto do Verification with AOP? We've just |learned OOP!"

13

bef ore task enabl eChannel (i nteger channel Nunmber,
DMATr ansacti onCl ass transaction){
i f(transaction == null){
m | og. | og(SEV_FATAL, psprintf (" DVAManagenent Cl ass: : enabl eChannel
called with transaction == null"));

Figure5: Theaspect that handles precondition checking of the transaction parameter for

thecodein Figure 3

ext ends ahb_bfm resource_access_DMAManagenent Cl ass(DMAManagenent Cl ass) {
around task enabl eChannel (i nt eger channel Nunber,
DMATr ansacti onCl ass transaction) {
/'l Cet access to the BFM
voi d = semaphore_get (WAI T, m ahbBf m get Semaphorel D(), 1);

proceed; // Call the original task

/'l Rel ease the BFM
semaphor e_put (m_ahbBf m get Semaphorel D(), 1);

Figure 6: Theaspect that handlesresource accessfor the codein Figure3

ext ends
precondi ti on_check_channel _nunber DMAManagerent Cl ass (DMAManagenent Cl ass)
dom nat es(trace_debug_DMAManagenent Cl ass,
ahb_bfm resource_access_DMAManagenent Cl ass) {
task aop_check_channel _nunber _precondition(integer param string caller){
i f(param < 0){
m | og. | og(SEV_WARN, psprintf("% called with a channel nunber = %0d.",
caller, param);
m | og. | og(SEV_FATAL, psprintf("lt must be greater than 0"));
}

i f(param > NUMBER_OF_CHANNELS -1){
m | og. | og(SEV_WARN, psprintf("% called with a channel nunber = %0d.",
caller, param);
m | og. | og(SEV_FATAL, psprintf("It nust be I ess than %9d",
NUMBER_OF_CHANNELS)) ;

SNUG Europe 2004 "Learnto do Verification with AOP? We've just |learned OOP!"

14

}

bef ore task enabl eChannel (i nteger channel Nunmber,
DMATr ansacti onCl ass transaction){
aop_check_channel _nunber _precondi ti on(channel Nunber
"DMATr ansacti onCl ass: : enabl eChannel ") ;

}
}

Figure 7: Theaspect that handles precondition checking of the channe number parameter

for thecodein Figure 3

One of the quoted advantages of AOP isthat it alows common code scattered throughout the class
hierarchy to be encgpsulated, alowing easer debug and maintenance. However, there are
limitations in Vera that prevent full encgpsulation. The problem isthat an advice block can only be
atached to one method, so if N methods require the same advice (say, to check the channeg number
isvdid), then n advice blocks have to be created. Verafilesthat contain AOP code cannot include
non-AOP code, 0 it is not possible to declare a loca function or task to implement the content of
the advice block. It is however, possible to introduce a function or task into the class associated
with the aspect, as shown in Figure 7. It adds a new task to the DMAManagementClass called
aop_check channd_number_precondition() which does the actud checking. This task can be
cdled by dl advice blocks in the DMAManagementClass. Unfortunately, this cannot be added into
other classes that need it, so the code will have to be duplicated in their aspect.

Although we may have ended up with more code, because of the overhead of declaring an aspect,
the code we now have is of a higher quality. The class now deds exclusively with its main concern
of managing a DMA controller. All of the infrastructure code that was tangled up with the class has
been untangled and encapsulated in smdler units that can be changed, reviewed and replaced much

more easly than before.

We have shown that AOP can be used to improve the reusability of a class, and to make a

testbench less bug prone and more maintainable. While these are the most obvious reasons to use

SNUG Europe 2004 "Learnto do Verification with AOP? We've just |learned OOP!"

15

AOP, they are not the only reasons. We aso advocate using AOP techniques during the initid
testbench development to set condtraints that stop certain design features from being exercised. This
could happen because they have not been implemented in the RTL, have not been supported yet in
the testbench, or there is a bug that causes smulations to fail when aregresson is about to berun. It
Is common to add congtraints to a design to prevent features from being exercised. However, it is
also common to forget to remove these condtraints. By using AOP to apply these condraints, they
can be contained in a separate location, and this can be checked quickly to see what features are
not being exercised. As each feature is implemented or fixed, the congtraint can be removed. At
the end of the testbench development, the development congraints location should be empty.
Fgure 8 shows an aspect that congtrains the size of a DMA block to 10 units.

extends constrai n_bl ock_size_DVATransacti onCl ass (DMATransacti onCl ass) {
constraint block_size{
m bl ockSi ze == 10;
}
}

Figure 8: An aspect that constrainsthe DMA Transaction for development reasons

5 "What aretherisksof AOP?"

51 Too Much Too Soon

A risk to a project usng AOP techniques, especidly for the firg time, is to attempt too much too
soon. Once the basic concepts of AOP are understood, it is easy to see many places in a program
where AOP might apply. However, at least in the first ingtance, it is not a good idea to implement
every cross-cutting concern found as an aspect. Managing programs with many aspects can be a
big task, with some serious issues. Only in the cases that clearly judtify the need should AOP be
used. The other cross-cutting concerns can dways be re-coded usng AOP during a later
refactoring phase [3].

SNUG Europe 2004 "Learnto do Verification with AOP? We've just |learned OOP!"

16

AOP is not an ‘dl or nothing methodology; since AOP complements OOP, it is possble to
introduce instances of the methodology in a controlled and gradua way. Adopting AOP on awide
scae will require new palicies, education and a good amount of actua coding practice.

5.2 The Temptation of the Quick Fix

When using AOP it is possible to add to, or dter, the functiondity of any part of an existing class.
Man years of AOP experience highlighted this feature as easly abused. It is possble to make quick
fixes (patches) to faulty code in any class, by applying an aspect toit. Thisis not the intended use of
AOP and tends to lead to code that is confusing and difficult to maintain. If there is faulty code in a
class, it should be fixed in that class. The ‘fix’ is not a separate concern; it belongs as part of the
class. If an aspect isused to fix the problem, only programs that implement that aspect will pick up
thefix. In addition, thereis nothing in the faulty classto tell a user that an aspect is required for the
classto operate correctly.

5.3 Undeterminable Program Flow

The quick fix behaviour leads to the situation where it can become amost impossible to determine
the execution flow of a testbench. During code andyss (debugging, maintenance, reviews, €tc),
looking a a method call on an object is not enough to determine what will actudly be executed.
Thisis because the functionality of a class may not be represented in one place. It is represented by
the class, plus zero or more aspects Thisis a problem with AOP, and one that can be avoided by
good CAD tools or by careful coding practises. By organising the aspect code into senshble files,
and by carefully choosing the functiondlity to implement as aspects this problem can be minimised.

5.4 Tight Coupling and Fragile Code

The inter-relationships between aspects is something that should be consdered in AOP. 1t is
possible, and sometimes desirable, to have multiple aspects acting on the same area of functiondity
within a class. This can lead to ordering dependencies and functiondity for a given area being
digributed across multiple aspects In Vera there is a congruct for managing the order in which

these aspects are gpplied to the class: a dominates list (see Figure 4). This feature is necessary,

SNUG Europe 2004 "Learnto do Verification with AOP? We've just |learned OOP!"

17

but may come with a high maintenance pricetag. When new aspects are added or removed, listsin
other aspects may have to be atered accordingly. Where dominates ligs are used, there is tight
coupling between aspects and thereforerigid code. This can make programs difficult to change.

55 Safety

Since the behaviour of code can be dtered by gpplying aspects it is possible to break previoudy
working code. A bug could be introduced in the new aspect code, or in the ordering of aspects
Where code has been tested and proved working, any outsde ‘tampering must be assumed
capable of having an adverse effect. In some organisations the ability to affect verified code in this
way is treated as a dgnificant safety concern. This is particularly true where code qudity is
important and code is shared with others outside the devel opment team

6 Conclusions

The introduction of AOP into Vera promises to make testbenches easier to design, easier to reuse
and easer to maintain. It does so by alowing designers the chance to concentrate on the red issues
in a testbench (the dominant concerns that actudly verify that the design is correct), and by
Sseparating out many of the non-reusable aspects of a dlass (the non-dominant concerns). This
paper has introduced the concepts behind AOP, and made a case for its use in testbench design.
We have discussed a number of areas where AOP can easily and successfully be used by the AOP

novice, and presented some guidelines for those who want to experiment further.

7 References

[1] Ken Wing Kuen Lee, "An Introduction to Aspect-Oriented Programming”, The Hong
Kong University of Science and Technology

[2] Ramnivas Laddad, "I want my AOP!, Part 1", Java World, http://www.javaworld.com

SNUG Europe 2004 "Learnto do Verification with AOP? We've just |learned OOP!"

18

[3] Arievan Deursen, Marius Marin, Leon Moonen, “Aspect Mining and Refactoring”

SNUG Europe 2004 "Learnto do Verification with AOP? We've just |learned OOP!"

19

