

Using the New Features in VMM 1.1

for Multi-Stream Scenarios

Jason Sprott *

JL Gray *

Sumit Dhamanwala *

Cliff Cummings †

* Verilab, Inc

Austin, TX, USA

www.verilab.com

† Sunburst Design

Beaverton, OR, USA

www.sunburst-design.com

March 17, 2009

ABSTRACT

Today's verification solutions often require complex concurrent streams of stimulus controlled

from higher level transactors or scenarios. The VMM 1.1 library has been enhanced to add this

capability, and support the management of access to the resources shared by different stimulus

streams, i.e. multiple streams providing stimulus to the same transactor. This paper describes the

challenges faced in developing these new features, and takes a detailed look at how they are used

in a VMM “multi-stream scenario” environment.

SNUG 2009 2 Using the New Features in VMM 1.1

 for Multi-Stream Scenarios

Table of Contents

1 From VMM Scenarios to Multi-Stream Scenarios ... 1

2 Grab Features in vmm_channel .. 3
3 Multi-Stream Scenarios .. 7

3.1 Overview of Multi-stream Scenarios .. 7
3.2 Building Multi-stream Scenarios .. 10
3.3 Wrapping a Single-stream Scenario as Multi-stream ... 13

3.4 Changing Generator Scheme for Scenario Selection .. 16
3.5 Do Multi-stream Scenarios Replace Single Stream? .. 19

4 Conclusions ... 19
5 References ... 20

Table of Figures

Figure 1: Example of Single-stream Scenarios from VMM 1.0 ... 1
Figure 2: Overview of Multi-stream Scenarios .. 3

Figure 3: Grab/Ungrab Functionality.. 5
Figure 4: Channel Grabbing Example .. 6

Figure 5: Multi-stream Scenario Class Diagram .. 8
Figure 6: Overview of Multi-Stream Scenarios .. 9
Figure 7: Registering Multi-stream Scenarios .. 11

Figure 8: Registering Channels ... 11
Figure 9: Registering a Multi-stream Generator ... 11

Figure 10: Implementing execute() in a Multi-stream Scenario ... 12
Figure 11: Implementing copy() Method for a Multi-stream Scenario .. 13

Figure 12: Example Multi-stream Wrapper for a Single-stream Scenario 15
Figure 13: New Election Scheme Example .. 16
Figure 14: Using Scenario Names in Election Scheme Example ... 17

Figure 15: Functions in Constraints (not currently working) ... 18
Figure 16: Finding Index in scenario_set for Constraints Using Locator Methods 19

Table of Tables

Table 1: VMM 1.1 Multi-stream Scenario Related Feature Overview .. 2
Table 2: Summary of Channel Grab Methods .. 5

SNUG 2009 1 Using the New Features in VMM 1.1

 for Multi-Stream Scenarios

1 From VMM Scenarios to Multi-Stream Scenarios

In a VMM 1.0 environment, the user can generate sophisticated sequences of random or directed

stimulus using VMM scenarios. Transactions containing the stimulus information are random-

ized in a scenario and driven by scenario generators, connected to the transactors they are driving

via VMM channels. Each scenario generator operates independently and can be loaded with its

own library of scenarios (these are now known as single-stream scenarios in VMM 1.1). Figure 1

shows a typical configuration, where each generator is dedicated to providing independent stimu-

lus for a specific transactor.

Figure 1: Example of Single-stream Scenarios from VMM 1.0

Single-stream scenario generators are type specific and created using the „vmm_scenario_gen

macro, which also creates a base scenario type. The base scenario type was designed to be con-

nected to one output channel. By default the single-stream scenario generator has the ability to

generate random scenarios. More sophisticated stimulus can be created by extending the basic

single scenario class, which can then be added to a library of scenarios the generator can choose

from.

Although single-stream scenarios can encapsulate procedural stimulus by overriding the

apply() method, the default behaviour is to create a randomized list of transactions based on

constraints. More than one single-stream generator can be connected to the same channel, but in

VMM 1.0 data sent by different generators simultaneously would simply be interleaved, which

isn’t always desirable.

The problem with single-stream scenarios is that in today’s complex testbenches, it’s not enough

to be able to create independent sophisticated scenarios, we also need to have some control over

SNUG 2009 2 Using the New Features in VMM 1.1

 for Multi-Stream Scenarios

the bigger picture: the way the scenarios operate together. We need to control the sequencing of

each generator’s stimulus stream and allow scenarios to control access to the resources they are

using. In the VMM 1.1, specific features have been added to address these needs.

Table 1 provides an overview of the VMM features that have been added, or modified, to pro-

vide a new multi-stream scenario capability.

Std Library Class Feature Description

vmm_ms_scenario (NEW) Multiple channel grabbing to avoid deadlock, parent/child relation-
ship and use execute() instead of apply() to run multi-stream sce-
narios

vmm_ms_scenario_gen (NEW) Registries for vmm_channel, vmm_ms_scenario and
vmm_ms_scenario_gen

vmm_ms_scenario_election (NEW) Selection scheme for multi-stream scenarios from registry

vmm_scenario (modified) Reference to parent scenario added (used by channel grab). Single
and multi-stream scenarios now extend from this class.

vmm_channel (modified) Grab/Ungrab

Table 1: VMM 1.1 Multi-stream Scenario Related Feature Overview

Multi-stream scenarios provide the user the same ability as single-stream scenarios to build flat

and hierarchical stimulus that can be organized into libraries. Multi-stream scenarios add the

capability to drive and control access to more than one channel. The multi-stream generator adds

the concept of registries which provide a database, indexed by string name, of resources that can

be used by the scenarios.

Figure 2 is an overview of a multi-stream scenario version of the example in Figure 1, where a

top level scenario controls stimulus to multiple transactors. The scenario is being used to drive

configuration reads/writes, packets and ATM cells as stimulus. The multi-stream generator has a

library of multi-stream scenarios, each capable of creating stimulus by using single-stream sce-

narios for Config, Packet and ATM Cell drivers, or injecting transactions directly into channels.

Also, although not shown in the diagram, multi-stream scenarios can call other multi-stream sce-

narios.

The key concepts of multi-stream scenarios are:

 Generator automatically picks and executes a multi-stream scenario from a library of scenarios

 The execute() task in the scenario implements stimulus control

 Multi-stream scenarios can access and control multiple channels within the generator’s scope

 Execute one multi-stream scenario from another, even if it’s in a different generator’s library

 Single and multiple-stream scenarios have a concept of hierarchy, i.e. they know their parent

scenario

SNUG 2009 3 Using the New Features in VMM 1.1

 for Multi-Stream Scenarios

 Although not exclusive to multi-stream scenarios, or part of the scenarios classes themselves,

the ability to grab channels and use scenario hierarchy in the grabbing rules, is fundamental

to multi-stream operation

Figure 2: Overview of Multi-stream Scenarios

In Figure 2, the Config, Packet and ATM are each independent flows. A multi-stream scenario

can be developed to coordinate the activities of these generators by ensuring the configuration

phase from the Config generator runs first, and then turn on specific traffic patterns. Addition-

ally, due to the channel locking capability, these scenarios can run concurrently with other traffic

being sent to the same channels from other sources. The concurrent traffic could be sent from

other multi-stream scenarios.

Multi-stream stimulus can be added to a legacy single-scenario environment, providing an addi-

tional and more controllable layer of stimulus. Alternatively, single-stream scenarios can be used

without modification in a multi-stream scenario environment.

2 Grab Features in vmm_channel

One of the limitations in previous releases of the VMM is that there is no built-in way for mul-

tiple streams of stimulus to exclusively lock accesses to a given channel. In a VMM testbench

we use a channel to pass stimulus information to a transactor. Data sent to a transactor’s channel

from different streams, i.e. multiple threads calling put()or sneak() on the same channel,

could be interleaved with one another. This is not always desirable. For example, an algorithm

might call for an uninterrupted sequence of commands. It may also be desirable to lock multiple

resources (channels) for a given set of operations, such that other stimulus streams do not inter-

fere with the flow of data to the transactors. For example, imagine an arbitration scenario where

the activities on multiple interfaces are coordinated to create specific traffic timing patterns for a

period of time.

SNUG 2009 4 Using the New Features in VMM 1.1

 for Multi-Stream Scenarios

In the previous release of the VMM, resources could be shared between stimulus streams, but

there was no standard technique to guarantee exclusive channel access. Developers typically

invented their own custom techniques to work around this limitation. When the multi-stream

scenario capabilities were added, this limitation had to be resolved.

The problem cannot be resolved simply by having individual scenarios grab channels for exclu-

sive use. Hierarchical stimulus, where a scenario (single or multi-stream) can have any number

of child scenarios, makes it necessary to have a scheme that allows the children to obtain a

grabbed channel for use, from their parent or another ancestor scenario. To enable full control

over channel access, the following requirements were devised:

 Single and multi-stream scenarios should be able to grab exclusive access to channels

 When a channel is grabbed only the owner can add items

 When a channel is grabbed only the owner can ungrab

 A child scenario can be granted the grab if its parent is the current owner

 Once a child grabs the parent’s channel, the parent can no longer access it until the child un-

grabs

 Siblings may not access channels grabbed by other siblings

 Ownership will be returned to the parent when the child releases its grab

 A blocking and non-blocking interface is provided

 Multiple channels can be grabbed simultaneously to help manage potential deadlock situations

vmm_scenario, vmm_channel and vmm_ms_scenario were designed, or modified, to ad-

dress the above requirements. The vmm_scenario class was modified to include hierarchical

information, i.e. a pointer to the parent scenario (or null). The information is used by

vmm_channel to decide on the outcome of a grab() call, where the grabber is passed as an

argument in the call. This is compared to the channel’s record of who currently owns the chan-

nel. The channel has access to all the information (via the handle to the grabber), necessary to

decide if the grabber is a sibling, or a child, of the current grab owner. The information is also

used to decide if an ungrab() call is legal. A summary of the new channel grab methods are

shown in Table 2.

SNUG 2009 5 Using the New Features in VMM 1.1

 for Multi-Stream Scenarios

Method Description

task vmm_channel::grab(

 vmm_scenario grabber)

Blocks until channel is grabbed

function void vmm_channel::ungrab(

 vmm_scenario grabber)

Ungrabs channel or generates an error if grabber
is not the owner

function bit vmm_channel::try_grab(

 vmm_scenario grabber)

Returns 1 if the channel grab is success, 0 other-
wise. No grab request will be queued.
If grabber is current owner, a warning will be is-
sued, but the function will still return 0.

function bit vmm_channel::is_grabbed() Returns 1 if the channel is currently grabbed by
someone, 0 otherwise.

task vmm_ms_scenario::grab_channels(

 ref vmm_channel channels[$])

Returns when all specified channels have been
grabbed. Used to avoid deadlock.

Table 2: Summary of Channel Grab Methods

Figure 3: Grab/Ungrab Functionality

Figure 3 shows the basic operation of grab/ungrab in a flow chart. The channel keeps track of

grab owners, where parent grabbers can be pushed onto a stack if a child grabs ownership from

SNUG 2009 6 Using the New Features in VMM 1.1

 for Multi-Stream Scenarios

it. Grab requests are not stored in the channel. Threads blocked when calling grab() will be

granted ownership based on grab rules and SystemVerilog thread scheduling order respectively.

Trying to grab a channel already owned by the scenario, is illegal and will result in an error. It is

up to the user to ensure that this condition does not occur.

It is possible legacy scenarios will access channels without grabbing them. This is allowed, but if

a channel has been grabbed, access to it will be blocked until the channel is free (not grabbed by

anyone). Threads blocked waiting on a grab for the channel will take priority over an attempted

access not using grab. This could cause a subtle change in a legacy scenario’s behavior, as com-

pared to VMM 1.0, if the original assumption was that the scenario stimulus would be inter-

leaved with other traffic on the channel.

Figure 4: Channel Grabbing Example

Figure 4 shows an example of channel grabbing behavior. Multi-stream scenario M1 has two

child scenarios: M2 (multi-stream) and S1 (single-stream). Multi-stream scenario M3 is a sibling

to M1. The following describes the behavior in the numbered boxes:

1. Nobody owns the channel. M1 performs grab() which is granted. M1 is now the owner.

2. M3 performs grab() which is blocked because it is not a child of the owner. M3’s request is

retried each time someone ungrabs the channel.

3. S1 performs grab() which is granted as M1 is the parent. S1 is now the owner and M1 is

pushed onto the owner stack, to be restored as owner when S1 ungrabs.

SNUG 2009 7 Using the New Features in VMM 1.1

 for Multi-Stream Scenarios

4. M2 performs grab() which is blocked since S1 is the current owner and is not the parent of

M2. M2’s request is retried when the owner ungrabs the channel.

5. S1 performs ungrab() which is allowed since it is the current owner. Ownership is passed

back to M1, but is immediately passed to M2. M2 is a child of M1. M1 is pushed onto the

owner stack, to be restored as owner when M2 ungrabs.

6. M2 performs ungrab() passing ownership to the parent M1.

7. M1 performs ungrab() allowing M3, who has being trying to grab every time the channel

is ungrabbed by someone, to take ownership.

8. M3 performs ungrab() and since there are no more requests or stacked owners, the channel

is free again.

A deadlock situation can arise if multiple streams try to grab an overlapping set of the same

channels, at the same time. For example, multi-stream scenario M1 might try to grab channels C,

B and A at the same time as another scenario M2 tries to grab B, C and D. If the channels are

grabbed sequentially by each scenario using grab(), neither will be able to complete the se-

quence.

To fix this, a mechanism to grab multiple channels was devised. If any of the channels failed to

grab, the request backs off all channels and tries again from the start. This solves the deadlock

problem, but since the mechanism spans multiple channels, the grab_channels() feature had

to be implemented in vmm_ms_scenario. The grab_channels() method takes in a list of

channels to grab and blocks until all channels have been grabbed.

3 Multi-Stream Scenarios

3.1 Overview of Multi-stream Scenarios

There are two main components to multi-stream scenarios: the multi-stream scenario generator

and the multi-stream scenario itself. Unlike single-stream scenarios, the generator and basic type

of the scenario are not created by a macro; they are extended from their respective std_lib base

classes. The multi-stream class hierarchy is shown in Figure 5.

SNUG 2009 8 Using the New Features in VMM 1.1

 for Multi-Stream Scenarios

Figure 5: Multi-stream Scenario Class Diagram

The vmm_ms_scenario_generator class is a VMM transactor. The generator contains three

registries:

 Multi-stream scenario registry: stores multi-stream scenario handles and acts as the library of

scenarios available for selection by the generator.

 Channel registry: stores channel handles that are used by the scenarios

 Multi-stream generator registry: stores handles to other multi-stream generators. This can be

used to get access to scenarios in another generator’s registry.

The registries themselves are private member variables of the class and are managed via methods

in the generator. Methods are provided to add, remove, replace, and search entries in the regis-

tries.

The election scheme used to select from the scenario_set[$] queue can also be changed, by

replacing the variable scenario_select with an instance extended from

vmm_ms_scenario_election. This is discussed in Section 3.4.

SNUG 2009 9 Using the New Features in VMM 1.1

 for Multi-Stream Scenarios

Figure 6: Overview of Multi-Stream Scenarios

Figure 6, provides an overview of multi-stream scenario operation, showing a hierarchy of gen-

erators, which either use multi-stream scenarios containing single-stream scenarios to create

stimulus, drive items directly into channel, or call multi-stream scenarios located in other genera-

tors. The following notes refer to the numbered points in Figure 6:

1. Scenarios, channels and other multi-stream generators are loaded into their respective regis-

tries. The entries in the channel registry store the handles for channels used by any of the

scenarios stored in the generator. Entries in the generator registry allow scenarios to look up

other scenarios in a different generator.

2. The generator automatically selects a multi-stream scenario from the library, using the elec-

tion mechanism. This will be executed by calling the scenario’s execute() method. There is

no default scenario to select, so the user must register at least one scenario with the genera-

tor.

3. A multi-stream scenario can run a single-stream scenario by instantiating and randomizing it

in the multi-stream scenario’s execute() method, then calling apply(). There is no default

mechanism to randomize and run single-stream scenarios.

4. A channel is fetched from the registry and passed as the argument to the single scenario’s

apply() method. In a multi-stream scenario, the single-stream scenarios can put data into any

SNUG 2009 10 Using the New Features in VMM 1.1

 for Multi-Stream Scenarios

compatible channel that the multi-stream scenario generator has in its registry. It is not bound

to a single output channel.

5. A multi-stream scenario can call other multi-stream scenarios from its own, or other genera-

tors. It is possible to look up other multi-stream scenario generators in the multi-stream gen-

erator registry. Once a handle to the other generator is obtained, the scenario can look up and

execute multi-stream scenarios in the other generator’s registry.

6. A multi-stream scenario can send transactions directly to a channel without using a single-

stream scenario by instantiating and randomizing a transaction directly in the execute()

method. The transaction can be sent to any compatible channel in the registry.

7. The hierarchical relationship is between the scenarios (single or multiple), not the generators.

A multi-stream scenario can have single or multi-stream scenarios children. Scenarios from

different generators can have a parent-child relationship with one another.

3.2 Building Multi-stream Scenarios

The following examples demonstrate how to setup a multi-stream scenario generator and imple-

ment the execute() method. The example has two multi-stream generators, msg0 and msg1.

Some multi-stream scenarios and channels are registered with the generators.

The ms_jtag_debug_cmds scenario, used in the example, is a child of

ms_traffic_with_jtag. The scenarios are in different generators. The

ms_traffic_with_jtag scenario also has a single-stream scenario and another multi-stream

scenario from the same generator as child scenarios. The execute() task runs the three scenar-

ios in separate threads concurrently.

Figure 7 shows the code for instantiating and registering multi-stream scenarios with their re-

spective generators. An important point to note is that instances are registered with the genera-

tors. It’s only safe to allow one thread to use the instance at any given time. If multiple threads

need to run the same scenario, e.g. the scenario is selected and run by its own generator, and in

parallel is run as child of a scenario in another generator, an instance of the scenario for each

thread is required. This is best done by ensuring that when a scenario is fetched from the registry

a copy of the scenario instance is made, such that the thread uses its own instance. This copy is

not currently built into get_ms_scenario() so it has to be done by the user (see Figure 10).

SNUG 2009 11 Using the New Features in VMM 1.1

 for Multi-Stream Scenarios

// instantiating multi-stream scenarios

traffic_with_jtag_debug_ms_scenario ms_traffic_with_jtag = new();

jtag_debug_cmds_ms_scenario ms_jtag_debug_cmds = new();

...

// register multi-stream scenarios with generator

msg0.register_ms_scenario(“TRAFFIC_WITH_JTAG”, ms_traffic_with_jtag);

msg0.register_ms_scenario(“TRAFFIC_NO_INTS”, ms_all_no_ints);

msg0.register_ms_scenario(“TRAFFIC_WITH_INTS”, ms_all_with_ints);

// register multi-stream scenarios with generator

msg1.register_ms_scenario(“JTAG_READ_STATUS”, ms_jtag_read_status);

msg1.register_ms_scenario(“JTAG_DEBUG_CMDS1”, ms_jtag_debug_cmds);

msg1.register_ms_scenario(“JTAG_RESET_CMDS”, ms_jtag_reset_cmds);

Figure 7: Registering Multi-stream Scenarios

In Figure 8, the channels used by the scenarios, or procedural code, are registered in the genera-

tor under logical names.

// register channels used by any of the scenarios or procedural code in the generator

msg0.register_channel(“INT”, int_channel);

msg0.register_channel(“CONFIG”, config_channel);

msg0.register_channel(“ATM”, atm_channel);

msg0.register_channel(“PACKET”, packet_channel);

msg1.register_channel(“JTAG”, jtag_channel);

msg1.register_channel(“CONFIG”, config_channel);

msg1.register_channel(“ATM”, atm_channel);

Figure 8: Registering Channels

Figure 9 illustrates how a multi-stream generator is registered with another generator. This al-

lows the scenarios in msg0 to access other scenarios in msg1.

// If a scenario in a generator uses a scenario registered in another generator

// the handle to that generator should be registered in the multi-stream generator

// registry. This can be used to lookup and execute the remote scenario

msg0.register_ms_scenario_gen(“JTAG”, msg1);

Figure 9: Registering a Multi-stream Generator

In Figure 10, the execute() task for the scenario encapsulates the stimulus generation and

flow control. In this case the three threads generate stimulus using different types of scenarios.

In the single-stream thread, the channel is grabbed for exclusive access. The other scenarios

leave grabbing (if any), to their own execute() tasks.

Although the multi-stream scenarios are shown as being randomized, this is only useful if there

are some random variables. Scenarios may not have random data, in which case they do not need

to be randomized in execute(). When the generator itself picks and runs a scenario, it is al-

ways randomized. The remote multi-stream scenario (ms_jtag), is run in the context of msg1,

where it was registered. It is not necessary to register the channels etc. ms_jtag uses with

msg0.

SNUG 2009 12 Using the New Features in VMM 1.1

 for Multi-Stream Scenarios

class traffic_with_jtag_debug_ms_scenario extends vmm_ms_scenario;

. . .

virtual task execute(ref int n_insts);

 // channel used by single-stream scenario

 config_channel config_ch;

 // create instance of single-stream scenario

 config_scenario config_sc = new(this);

 // get multi-stream scenarios (make local copies of instances for thread safety)

 vmm_ms_scenario ms_jtag = get_ms_scenario(“JTAG_DEBUG_CMDS”,“JTAG”);

 vmm_ms_scenario ms_traffic = get_ms_scenario(“TRAFFIC_NO_INTS”);

 $cast(ms_jtag, ms_jtag.copy());

 $cast(ms_traffic, ms_traffic.copy());

 // setup hierarchy. The following are all children of this scenario

 config_sc.set_parent_scenario(this);

 ms_traffic.set_parent_scenario(this);

 ms_jtag.set_parent_scenario(this);

 // run various stimulus streams

 fork

 begin:single_stream

 int unsigned n=0;

 $cast(config_ch, this.get_channel(“CONFIG”));

 // we want to have exclusive access to the channel

 config_ch.grab(this);

 config_sc.randomize() with { ... };

 config_sc.apply(config_ch, n);

 config_ch_ungrab(this);

 n_insts += n;

 end:single_stream

 begin:local_multi_stream

 int unsigned n=0;

 ms_traffic.randomize() with { ... };

 ms_traffic.execute(n);

 n_insts += n;

 end:local_multi_stream

 begin:remote_multi_stream

 int unsigned n=0;

 ms_jtag.randomize() with { ... };

 ms_jtag.execute(n);

 n_insts += n;

 end:remote_multi_stream

 join

endtask:execute

...

endclass:traffic_with_jtag_debug_ms_scenario

Figure 10: Implementing execute() in a Multi-stream Scenario

SNUG 2009 13 Using the New Features in VMM 1.1

 for Multi-Stream Scenarios

class jtag_debug_cmds_ms_scenario extends vmm_ms_scenario;

 ...

 function vmm_data copy(vmm_data to = null);

 jtag_debug_cmds_ms_scenario s = new();

 // it is essential to copy across the context generator, or the scenario will

 // not know where to run from. We need to use these “unofficial” methods

 // to do that, as the member is local and there is no copy() in vmm_ms_scenario

 s.Xset_context_genX(this.Xget_context_genX());

 ...

 return(s);

 endfunction

 ...

endclass

Figure 11: Implementing copy() Method for a Multi-stream Scenario

Figure 11 shows how the copy method is implemented in a multi-stream scenario. It is recom-

mended that copy is implemented in every multi-stream scenario, such that the value of the

context_scenario_gen variable (the generator the scenario is registered with), can be cop-

ied. This allows other multi-stream scenarios to take a copy of the scenario more easily, which is

required for thread safety, and shown in Figure 10.

The copy functionality is not built into the vmm_ms_scenario class. Since the

context_scenario_gen variable in vmm_ms_scenario is local, Xset_context_genX()

and Xget_context_genX() functions must be used to access it. These functions are intended

to be local (this is apparent in the source code comments), but that is not enforced and they can

be called as a public functions. There is no other way to access context_scenario_gen.

3.3 Wrapping a Single-stream Scenario as Multi-stream

A project may have a library of previously developed single-stream scenarios, either from an-

other level of testing (e.g. module), or legacy from another project. These scenarios, and the

original single-stream scenario generators, can still be used in the multi-stream environment;

however, the intended behaviour will dictate if this is the best solution.

Single-scenarios themselves can be useful stimulus containers in a single or multi-stream envi-

ronment. They have useful functionality to encapsulate transaction data item randomization, e.g.

randomizable list of transaction items. It is the single-stream generators that can become redun-

dant in a multi-stream environment.

For independent stimulus streams, that do not require coordination with other streams, using the

original single-stream generators may be fine. However, if a scenario is to be coordinated, and

made accessible to other scenario generators, it might be useful to make it look like a multi-

stream scenario. A multi-stream scenario generator provides the features to support these re-

quirements, and wrapping a single scenario as a multi-stream scenario can be useful for the fol-

lowing reasons:

SNUG 2009 14 Using the New Features in VMM 1.1

 for Multi-Stream Scenarios

 Removes the need for the single-stream generator, meaning only one type of generator is used

 vmm_ms_scenario_gen::get_ms_scenario() allows other multi-stream scenarios in the

same generator to use the scenario

 Multi-stream scenarios in other generators can also access the wrapped scenario via their gen-

erator registry

The scenario can be wrapped by instantiating and running it inside a multi-stream scenario. This

would involve writing a multi-stream scenario to select, instantiate and run, potentially many

single scenarios. Alternatively, it could require writing one multi-stream scenario for each single-

stream scenario. The advantage of the latter is that it is possible to use the generator to automati-

cally select (according to election constraints), and run each wrapped single-stream scenario.

This emulates the behaviour of a single-stream scenario generator.

Wrapping each scenario could require a significant amount of work, so some form of generic

wrapper would be useful. Unfortunately, due to the way the single-stream scenarios are created

using the `vmm_scenario_gen macro, a completely generic wrapper is not possible without

another macro.

VMM 1.1 has changed the class hierarchy to make all scenarios extend from the vmm_scenario

class, but there is no virtual method for apply() in this class, which would be required to write

the generic code. The apply() method is actually implemented in the concrete class generated

by the `vmm_scenario_gen macro, and has a specialized type for the channel in the argu-

ments.

However, it is possible to write a wrapper for a “family” of single-stream scenarios generated by

the `vmm_scenario_gen macro, using the class types created by the macro. Figure 12 shows

an example of a wrapper that can be used for any scenario derived from atm_cell_scenario.

When execute() is called by the multi-stream generator, the wrapper will randomize the

original single-stream scenario and apply its items to the appropriate channel.

The wrapper should not perform a grab/ungrab of the channel, as this could change the behaviour

of the original scenario, which might be designed to interleave transactions with other scenarios.

Of course, the behaviour could be changed anyway, by the surrounding channel grabbing in the

multi-stream environment.

The other reason not to put a grab in the wrapper is that it can cause the apply() to be blocked

from its channel, stopping it from being able to complete. This can happen if the legacy scenario

implements its own apply() method, using the VMM 1.0 style of channel put(), where no

pointer to the grabber is passed to the channel. This nested call will not be able to obtain access

to the channel as the wrapper is the owner and the channel knows of no relationship between the

two. If modifying the original scenario is an option, it is very easy to retrofit the apply()

method to pass the pointer in any put() or sneak() calls used. This will result in the scenario

having the desired child grabbing privileges.

SNUG 2009 15 Using the New Features in VMM 1.1

 for Multi-Stream Scenarios

// macros creating single-stream related classes

`vmm_channel(atm_cell)

`vmm_scenario_gen(atm_cell, “ATM_CELL”)

// wraps any scenario derived from atm_cell_scenario class

class atm_cell_ms_wrapper extends vmm_ms_scenario;

 atm_cell_scenario scenario;

 atm_cell_channel out_ch;

 ...

 function new(atm_cell_scenario s, atm_cell_channel ch, string name);

 super.new(null);

 define_scenario(name, 0);

 scenario = s;

 /* scenario.set_parent_scenario(this); */ // needed if channel grab used

 out_ch = ch;

 endfunction:new

 task execute(ref int n);

 int unsigned nn = 0;

 scenario.randomize();

 /* out_ch.grab(this); */ // could change behavior of scenario

 scenario.apply(out_ch, nn); // run child scenario

 /* out_ch.ungrab(this); */

 n += nn;

 endtask:execute

endclass:atm_cell_ms_wrapper

program test;

 ...

 // instance of a class that extends atm_cell_scenario

 my_atm_cell_scenario atm_sc = new;

 // wrap instance in a multi-stream scenario

 atm_cell_ms_wrapper my_ms_atm = new(atm_sc, atm_ch, “ATM_MS”);

 ...

 initial begin

 // register wrapped scenario in multi-stream registry

 gen.register_ms_scenario(“ATM_WRAPPED_SCENARIO”, my_ms_atm);

 ...

 end

endprogram

Figure 12: Example Multi-stream Wrapper for a Single-stream Scenario

If however, you do really want the wrapper to grab, it is possible as long as the default apply()

method is being used. The code generated by `vmm_scenario_gen using the new VMM 1.1

macro performs a channel put() passing a pointer to the grabber. All that is required for correct

operation would be to set the parent scenario (so the grab can be inherited), using

set_parent_scenario(). This can be seen in the new() method, commented out, in the Fig-

ure 12 listing.

SNUG 2009 16 Using the New Features in VMM 1.1

 for Multi-Stream Scenarios

There is a big disadvantage to this style of wrapping when in-line constraints (i.e. randomize

() with { ... }) are required during randomization of the scenario. If the randomize()

call is made inside the wrapper, there is no scope for applying in-line constraints.

So on the one hand, many scenarios of the same family can be wrapped quite quickly; but on the

other, it’s only really useful if no in-line constraints are needed. In many cases the solution could

be inferior to using the original single-scenario generator in parallel with the multi-stream gen-

erator(s).

3.4 Changing Generator Scheme for Scenario Selection

The selection of multi-stream scenarios from the registry is done using the

vmm_ms_scenario_election class. There is no default scenario in a multi-stream generator,

so at least one scenario has to be registered with the generator. The default behaviour of this

class is to use a round-robin scheme. An index value is randomized, based on constraints, which

then points to a location in an array of scenarios to choose from. This is the same technique used

for selecting items in single-stream scenarios.

Changing the behaviour of the election scheme is quite simple. A new class is extended from the

vmm_ms_scenario_election class, instantiated in the testbench and programmed as the elec-

tion scheme for the multi-stream generator.

One thing to note is that the generator’s select_scenario variable will be restored to its

original state after construction, when reset_xactor() is called with rst_typ ==

HARD_RST. The user will have to ensure that the new election scheme is reprogrammed in this

case. Figure 13 shows an example of a typical way to redefine the election scheme, using a dis-

tribution.

class my_election extends vmm_ms_scenario_election;

 function new();

 // turn off unwanted constraint block in parent class

 this.round_robin.constraint_mode(0);

 endfunction:new

 // add new constraints to distribute selection between

 // index values 0, 1 and 2 with different probabilities

 constraint new_dist {

 select dist {0:=3, 1:=1, 2:=1};

 }

endclass:my_election

...

m_election sel = new; // new election scheme

 // assign new election scheme to generator

gen.select_scenario = sel; // Warning: may be overwritten after a reset_xactor()

Figure 13: New Election Scheme Example

Referring to index values in the multi-stream scenario set is not very informative and relies on

knowing the position of specific scenarios in list. It would be much nicer if it were possible to

refer to the logic names of the scenarios, as they appear in the registry. That information is in the

SNUG 2009 17 Using the New Features in VMM 1.1

 for Multi-Stream Scenarios

generator class, so to make this possible some way to access the generator class from the election

code would be required.

class my_election extends vmm_ms_scenario_election;

 // for access to scenario registry methods

 vmm_scenario_gen gen;

 // stores index of scenario in set against names

 protected int scenario_lookup[string];

 // required to workaround constraints not being able to call non-static functions

 function pre_randomize();

 super.pre_randomize();

 scenario_lookup.delete; // create new table each randomize

 foreach(scenario_set[i]) begin

 scenario_lookup[gen.get_ms_scenario_name(scenario_set[i])] = i;

 end

 endfunction: pre_randomize

 // new constraints use array to lookup index values from names

 constraint new_dist {

 select dist {

 scenario_lookup[“ATM_ONLY”] :=3,

 scenario_lookup[“CONFIG1”] :=1,

 scenario_lookup[“BIG_PACKETS”] :=1

 };

 }

endclass:my_election

...

my_election sel = new; // new election scheme

my_election.gen = gen; // pointer back to scenario generator

gen.select_scenario = sel; // Warning: may be overwritten after a reset_xactor()

Figure 14: Using Scenario Names in Election Scheme Example

Figure 14 illustrates an implementation of the same election redefinition as Figure 13, but instead

of using the raw index values in the constraint, the logical names of the registered scenarios are

used. This requires the new election class to store a pointer to the generator, and build its own

lookup, mapping scenario name to the index in the scenario_set[$] queue. The lookup is

built each time the election scheme is randomized, in case scenarios are added or removed from

the registry. However, if this is guaranteed not to happen, it need only be done once and does not

need to be in pre_randomize().

The lookup is required to work around a limitation in VCS (2008.10), where only static functions

can be used in constraints like this. Using an array of dynamic data is fine though. Otherwise the

code in Figure 15 could have been used. The scenario_lookup array is not required, because

the generator registry functions are being called directly, where the final return value is the index

to the matched scenario in the scenario_set[$] queue.

SNUG 2009 18 Using the New Features in VMM 1.1

 for Multi-Stream Scenarios

// This code does NOT work

constraint new_dist {

 select dist {

 gen.get_ms_scenario_index(gen.get_ms_scenario(“ATM_ONLY”)) := 3,

 gen.get_ms_scenario_index(gen.get_ms_scenario(“CONFIG1”)) := 1,

 gen.get_ms_scenario_index(gen.get_ms_scenario(“BIG_PACKETS”)) := 1

 };

}

Figure 15: Functions in Constraints (not currently working)

There is a better solution to avoid having to store a reference to the generator in the election

class, but it involves calling the function vmm_ms_scenario::Xget_context_genX(). As

described in Section 3.2, this function is intended to be local, but there is no other way to access

the associated variable. The function returns a reference to the generator the multi-stream sce-

nario is registered with. Assuming all scenarios in the scenario_set[$] queue (a member of

the election class), are registered with the same generator, the function would only have to be

called on the first item in the set.

Using this function is a neater solution, but is not recommended, purely because it goes against

the intent for the function and there is a risk this interface could change in the future. This issue

has been reported as a potential bug.

Another way of avoiding the need for a reference back to the generator is to iterate around the

election class scenario_set[$] queue and use the name information stored in the scenarios

themselves. These are the names originally defined for the multi-stream scenarios, not the logi-

cal names used in the generator registry, which can be different. In this case, queue locator

methods can be used to find an index that matches a particular expression. The expression can

match, for example, the scenario kind name(s).

It’s still not possible to use this technique directly in the constraint, as the locator method return

results in a queue. Wrapping the search in a function runs into the same static function limitation

as before, so it will still be necessary to build some sort of lookup. It is also still necessary to

refresh the lookup values for each randomize in case scenarios have been added or removed.

Figure 16 illustrates an example of using the locator lookup.

In the context of a multi-stream scenario generator, it is still usually more useful to make the

election scheme select on the registry’s logical names. It is a bit more work, but operates at the

appropriate level of abstraction.

There is of course a potential performance impact using the basic implementation described in

Figure 14, especially if the there are lots of scenarios registered with the generator. However, the

number of multi-stream scenario selections is typically small, compared to the number of data

items generated within a scenario, so the impact overall may be trivial.

SNUG 2009 19 Using the New Features in VMM 1.1

 for Multi-Stream Scenarios

class my_election extends vmm_ms_scenario_election;

 ...

 int result[$];

 int scenario_lookup[string];

 ...

 function pre_randomize();

 super.pre_randomize();

 scenario_lookup.delete;

 // find index matching expression. Note that there may be more than

 // one kind defined for a scenario

 result = scenario_set.find_index(i) with (

 i.scenario_name(my_ms_scenario::ATM_ONLY) == “SC_ATM_ONLY”);

 scenario_lookup[“SC_ATM_ONLY”] = result[0];

 ...

 endfunction:pre_randomize

 ...

endclass:my_election

Figure 16: Finding Index in scenario_set for Constraints Using Locator Methods

3.5 Do Multi-stream Scenarios Replace Single Stream?

Now that there is a choice to use multi or single-stream scenarios, it’s reasonable to ask if single-

stream scenarios should be deprecated. Single and Multi-stream scenario generators are very

similar.

Although multi-stream scenarios can operate down at the data item level, single-stream scenarios

already have a built-in list of data items, and are randomized at that level when using a single-

stream scenario generator. This does not happen by default in a multi-stream scenario. The be-

haviour has to be implemented in the execute() method. This is slightly more work.

The real reason for using a multi-stream scenario is to be able to coordinate stimulus going to

multiple channels. If this is not required, single stream scenarios work well and can still be used

later in a multi-stream environment. Both single and multi-stream generators can exist together

in the same testbench and can even share channels. Single-stream scenarios can now also grab

channels.

Single-stream scenarios still offer a quicker solution when multiple stimulus stream control is not

required. Atomic scenarios and the built-in item list randomization of single-stream scenarios

offer a fast way to create randomized transactions of a specific type.

4 Conclusions

The VMM has been upgraded to include the capability to generate and control multiple stimulus

streams. The new features allow users to generate more sophisticated stimulus, and more pre-

cisely guide the flow of randomized transactions throughout the testbench. This level of control

over stimulus is required, as the interaction between the multiple interfaces, present in today’s

designs, contribute significantly to the functional space that needs to be verified, and is where

many of the bugs are lurking.

SNUG 2009 20 Using the New Features in VMM 1.1

 for Multi-Stream Scenarios

The new features are backward compatible with the previous single-scenario scheme, and also

provide a way to use legacy single-stream scenarios in a multi-stream environment, where chan-

nel grabbing is deployed. This means that current VMM testbenches have an easy migration path

to the new features. In some cases the original single-stream generators remain as-is, with addi-

tional multi-stream scenario stimulus being layered on top.

The new features also bring the VMM up to a comparable level with other multi-stream capable

methodologies. This is useful, since interoperability between the methodology libraries is be-

coming more important. The SystemVerilog user base is growing rapidly, as is the requirement

for interoperable third party Verification IP.

5 References

[1] VMM Standard Library User Guide (VMM 1.1 release)

[2] VMM 1.1 std_lib source code

[3] “Understanding Layered Stimulus Generation”, Verification Now 2008 Conference (Verilab Internal)

[4] “Multi-stream Scenarios, Enhancing Stimulus Generation in the VMM”, Verilab, BSNUG2008

