
Utilizing Vera Functional Coverage in the
Verification of a Protocol Engine for the

FlexRayTM Automotive Communication System

Mark Litterick, Verilab
Markus Brenner, Freescale Semiconductor

2

Mark Litterick
Outline

• Overview of FlexRayTM communications system
– key characteristics
– cluster topology and node architecture
– frame and communication cycle format and hierarchy

• Testbench architecture
– role of functional coverage
– overview of protocol engine

• Derive internal state coverage for protocol operation controller
• Vera implementation, structure and coding
• Problems and limitations
• Conclusion

3

Mark Litterick
FlexRayTM Overview

CCHOST

Node 3

CC = Communication Controller

ChA ChB

CCHOST

Node 2

CCHOST

Node 1

• Flexibility, performance and fault tolerance
• Distributed, adaptive clock synchronization
• Micro-architectural specification using SDL

DATA

HEADER TRAILERPAYLOAD

NETWORK
IDLE TIME

SYMBOL
WINDOW

DYNAMIC
SEGMENT

STATIC
SEGMENT

SLOT SLOT

PAYLOAD

COMMUNICATION
CYCLE

FRAME

4

Mark Litterick
FlexRayTM Node Architecture

PROTOCOL ENGINE

BUS DRIVER BUS GUARDIAN

CONTROLLER HOST INTERFACE

COMMUNICATION
CONTROLLER

NODE

POWERHOSTCLOCK

ChA
ChB

• Single or dual channel
• CHI is responsible for

registers, data buffers,
interrupts, cmds, etc.

• PE provides OSI Layer 2
(Data Link) functionality

• Bus guardian optional
• Typically implemented

as single chip (SoC)
solution or dual-chip
CPU + CC peripheral

5

Mark Litterick

Protocol Engine
Testbench Architecture

CONSTRAINED RANDOM
SCENARIO GENERATOR

FLEXRAY CLUSTER

CLUSTER CONFIG
FRONT-END

GLOBAL PARAMETERS
& SERVICE FUNCTIONS

DIRECTED TESTCASES

TRANSACTORS
& RESPONDERS

DRIVERS
& MONITORS

PROTOCOL
ENGINE

TRANSACTORS
& RESPONDERS

DRIVERS
& MONITORS

CONFIGURATION
LIBRARY

HOST INTERFACE

STIMULUS

CLUSTER & NODE CONFIGURATION

CONSTRAINED RANDOM
SCENARIO GENERATOR

FLEXRAY CLUSTER

CLUSTER CONFIG
FRONT-END

GLOBAL PARAMETERS
& SERVICE FUNCTIONS

DIRECTED TESTCASES

TRANSACTORS
& RESPONDERS

DRIVERS
& MONITORS

PROTOCOL
ENGINE

TRANSACTORS
& RESPONDERS

DRIVERS
& MONITORS

CONFIGURATION
LIBRARY

HOST INTERFACE

STIMULUS

CLUSTER & NODE CONFIGURATION

SCOREBOARD
& CHECKER

SCOREBOARD
& CHECKER

CHECKERS

CONSTRAINED RANDOM
SCENARIO GENERATOR

FLEXRAY CLUSTER

CLUSTER CONFIG
FRONT-END

GLOBAL PARAMETERS
& SERVICE FUNCTIONS

DIRECTED TESTCASES

TRANSACTORS
& RESPONDERS

DRIVERS
& MONITORS

PROTOCOL
ENGINE

TRANSACTORS
& RESPONDERS

DRIVERS
& MONITORS

CONFIGURATION
LIBRARY

HOST INTERFACE

STIMULUS

CLUSTER & NODE CONFIGURATION

SCOREBOARD
& CHECKER

SCOREBOARD
& CHECKER

CHECKERS

ASSERTIONS

CODE
COVERAGE

CONSTRAINED RANDOM
SCENARIO GENERATOR

FLEXRAY CLUSTER

CLUSTER CONFIG
FRONT-END

GLOBAL PARAMETERS
& SERVICE FUNCTIONS

DIRECTED TESTCASES

TRANSACTORS
& RESPONDERS

DRIVERS
& MONITORS

PROTOCOL
ENGINE

TRANSACTORS
& RESPONDERS

DRIVERS
& MONITORS

CONFIGURATION
LIBRARY

HOST INTERFACE

STIMULUS

CLUSTER & NODE CONFIGURATION

SCOREBOARD
& CHECKER

SCOREBOARD
& CHECKER

CHECKERS

ASSERTIONS

STIMULUS
COVERAGE

STATE
COVERAGE

RESPONSE
COVERAGE

FUNCTIONAL COVERAGE

CODE
COVERAGE

CONSTRAINED RANDOM
SCENARIO GENERATOR

FLEXRAY CLUSTER

CLUSTER CONFIG
FRONT-END

GLOBAL PARAMETERS
& SERVICE FUNCTIONS

DIRECTED TESTCASES

TRANSACTORS
& RESPONDERS

DRIVERS
& MONITORS

PROTOCOL
ENGINE

TRANSACTORS
& RESPONDERS

DRIVERS
& MONITORS

CONFIGURATION
LIBRARY

HOST INTERFACE

STIMULUS

CLUSTER & NODE CONFIGURATION

SCOREBOARD
& CHECKER

SCOREBOARD
& CHECKER

CHECKERS

ASSERTIONS

6

Mark Litterick

Protocol Engine
Architecture

CODEC

PROTOCOL
ENGINE

SYNC

FSPMAC

POC

BUS GUARDIAN
INTERFACE

CHANNEL
INTERFACE

CONTROLLER
HOST INTERFACE DC

H

NPNA

CJ

CG

CCC

ICYICCCCR

IS

WD

WS

WL ILCL

R

C

POC

POC = Protocol Operation Control
SYNC = Clk Sync and Macrotick Gen
MAC = Media Access Control
FSP = Frame and Symbol Processing
CODEC = Coding/Decoding

7

Mark Litterick

coldstart listen

reset(startup)

false

set (tStartup);

true

tStartup

header received on A,
header received on B

tStartupNoise

set (tStartupNoise);

integration started on A

CHIRP on A CE Start on ACHIRP on B CE Start on B

zChannelIdle(A) := true ; zChannelIdle (A) := false ;zChannelIdle(B) := true; zChannelIdle(B) := false;

zChannelIdle (A) AND
zChannelIdle (B)

symbol decoded on A ,
symbol decoded on B

set (tStartupNoise);

integration started on B

Trigger Coverage

#define COLDSTART_LISTEN 7’b111_0011
event cover_trig_evt;
coverage_group poc_trig_cov {
sample_event = sync(ALL,cover_trig_evt) async;
sample poc.vState {

state F07_11_003_A (COLDSTART_LISTEN) if (poc.header_received_on_A === 1);
state F07_11_003_B (COLDSTART_LISTEN) if (poc.header_received_on_B === 1);
state F07_11_005 (COLDSTART_LISTEN) if (poc.CHIRP_on_A === 1);
state F07_11_011 (COLDSTART_LISTEN) if (poc.tStartup === 1);

}
}
// called when any SDL trigger is active
coverObject(... obj) {
trigger(cover_trig_evt);

}

8

Mark Litterick

coldstart consistency
check

 > 0= 0

else

odd

even

vRemainingCold -
StartAttempts ?

 > 0

else

zStartupNodes ?

vCycleCounter ?

zStartupNodes ?

else

else

enter
operation

COLDSTART_CON-
SISTENCY _CHECK

enter
coldstart gap

abort startup

zColdstartAborted := true;

SyncCalcResult
(zSyncCalcResult, zStartupNodes, zRefNode)

zSyncCalcResult ?

WITHIN_BOUNDS

vPOC!ColdstartNoise =
zColdstartNoise ;

vPOC!StartupState := COLDSTART_CONSISTENCY_CHECK;

coldstart gap integration listen normal active

State Transition Coverage

event cover_state_evt;
coverage_group poc_state_cov {
sample_event = sync(ALL,cover_state_evt) async;
sample poc.vState {

state CCC (7’b111_1010);
state IL (7’b111_0101);
trans F07_13_007 (“CCC ” -> “IL”)

if ((poc.zStartupNodes <= 0)
&& (poc.vCycleCounter[0] === 1));

trans F07_13_009 (“CCC ” -> “IL”)
if ((poc.zSyncCalcResult !== WITHIN_BOUNDS)

&& (poc.zStartupNodes >0)
&& (poc.vCycleCounter[0] === 1));

trans F07_13_011 (“CCC ” -> “IL”)
if ((poc.vRemainingColdstartAttempts <= 0)

&& (poc.zStartupNodes === 0)
&& (poc.vCycleCounter[0] === 0));

}
}
// called when a state change occurs
coverObject(... obj) {
trigger(cover_state_evt);

}

9

Mark Litterick
Vera Implementation

DataObjectBase

copy()

equals()

toString()

CoverageBase

coverObject()

queryBin()

queryHit()

deactivateBin()

CoverageObject

data

CoverageClass
coverage_object

coverage_event

coverage_group

CoverageMonitor
coverage_port

coverage_object

coverage_class
enable()

disable()

queryHit()

MonitorBase

configure()

restart()

check()

if (change_of_state()) {
update_poc_obj();
poc_cov.coverObject(poc_obj);

}
update_poc_obj() {

if (vera_is_bound(port.$sig))
poc_obj.member = port.$sig;

}

task coverObject(…) {
trigger(cover_evt);

}
coverage_group poc_state_cov {
sample_event = sync(ALL,cover_evt) async;
sample poc.vState {

wildcard state WL (7’b010_xx01);
trans DC_C (“DC” -> “C”);
trans F02_X (“NP” -> “H”) if (poc.a === 1);
trans POC1 (“DC” -> “C” -> “NP”);

}
}

queryHit(“bin_pattern”);
// feedback for constrained random
// checking capability for directed tests

deactivateBin(“bin_pattern”);
// disable bins related to void binds

10

Mark Litterick
Managing Coverage Info

• Total coverage
– all tests, all configs

• Config coverage
– all tests, one config

• Test coverage
– one test, all configs

• Achieved through:
– database namespace

management
– report merging
– post processing

11

Mark Litterick
Problems and Limitations

• Real-world RTL implementation takes time to calculate & respond
– SDL diagrams are time-independent: many process steps in zero time
– coverage implementation more closely tied to RTL than intended

• Inaccessibility of some variables results in missed coverage
– only a few variables could not be accessed in RTL implementation since

stored in RAM (~ 2% coverage)

• Very difficult to reach some protocol corner cases with constrained
random stimulus
– many directed tests were required

• Evolution of FlexRayTM protocol specification and SDL
– maintenance of spec tags could become an issue
– auto-generation of coverage statements from SDL feasible, but outside the

scope of this project

12

Mark Litterick
Conclusion

• Pragmatic solution to internal state coverage for Protocol Operation
Controller for FlexRayTM Communication Controller

• Demonstrated the role of internal state coverage within the overall
verification environment

• Functional coverage proved invaluable in measuring effectiveness of
constrained-random and directed tests for regression suite
– identifying missing tests and coverage holes
– steering constrained-random tests towards coverage targets
– highlighted testbench infrastructure requirements to enable directed tests

• Vera implementation and code provided are scaleable and usable
for a number of similar applications

mark.litterick@verilab.com

