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ABSTRACT 
 
The topic of register models, configuration objects, and their interaction can be an area of 
great complexity and sometimes confusion for many verification engineers.  Fundamentally, a 
register model holds the contents of each register in the design for use by the verification 
environment, while a configuration object holds the configuration for the interface protocol 
agents, verification components and verification environment.  So while one is 
implementation specific (register model) and one is generic (configuration object), they both 
hold configuration information and are both required in a given testbench.  In this paper we 
will describe the unique roles of register models and configuration objects, explain why they 
should both be used in a verification environment, and present a framework in 
SystemVerilog/UVM for making the testbench and design configurations remain in sync for 
different types of designs.  
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1. Introduction 

The topic of register models, configuration objects, and their interaction, can be an area of great 
complexity and sometimes confusion for many.  On a fundamental level, a register model holds a 
representation of each register in the design under test (DUT) for use by the verification 
environment, while configuration objects hold the configuration for the interface protocol agents, 
UVM verification components (UVCs), and verification environment.  Both the DUT and the testbench 
must have the same configuration in order to communicate.  In the case of static configurations (e.g. 
number of channels, bus widths – which may or may not be programmable in DUT registers) 
synchronizing the DUT and testbench is trivial, as these configurations are fixed to just one value for 
a given simulation run.  When dealing with dynamic configurations (e.g. configurations that are 
programmed into DUT registers and can change during a simulation), achieving perfect 
synchronization between the DUT and the testbench can be a real challenge.  In terms of roles, it is 
possible for the register model to play a proactive role with the configuration object playing a reactive 
role (e.g. a test case randomizes the register model and uses it to program the DUT, the testbench’s 
configuration objects get updated to remain in sync).  It is also possible for the roles to be reversed 
(e.g. a test case randomizes a testbench configuration object and uses it to program the DUT, the 
register model gets updated to remain in sync).  Despite the fact that both structures hold 
configuration information, any non-trivial verification environment should have both, and in the 
sections that follow we will show how this should be done. 

This paper focuses primarily on keeping the DUT and testbench in sync when dealing with pseudo-
static and dynamic configurations within a block-level testbench.  It is divided into the following 
sections: section 2 describes the roles of configuration objects and register models, and looks at their 
areas of overlap and difference; section 3 discusses how to implement a configuration object that 
handles designs which do not make immediate use of register settings; and section 4 provides a 
solution for keeping the configuration object in perfect sync with the DUT when dealing with dynamic 
configuration fields.  

2. Register Models vs. Configuration Objects 

Let’s start by examining the unique characteristics of register models and configuration objects, and 
what they can accomplish for us. 

A register model’s role is: 

¶ to provide a database of each register and register field inside the DUT along with its access 
type (e.g. read/write, read-only), size, reset value, and current value 

¶ to provide test case writers with an API for doing register accesses using bus transactions 
(known as front-door access) 

¶ To provide test case writers with an API for doing register accesses without using bus 
transactions, by directly accessing the RTL signal representing the register in the design 
(known as back-door access) 

The basic structure of a UVM register model is shown in Figure 1. 
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Figure 1. Register model. 

A configuration object’s role is: 

¶ to encapsulate static (i.e. never changes) or pseudo-static (i.e. changes infrequently) interface 
protocol configuration information (e.g. number of data lanes, operating speed) as described 
in a standards-based protocol specification (e.g. USB, I2C) or proprietary block-level 
specification document 

¶ to encapsulate dynamic configuration information (e.g. design-specific fields such as “start 
processing”, “operation type”) as described in a standards-based protocol specification or 
proprietary block-level design specification document 

¶ to potentially provide constrained-random values for the verification environment to 
program the DUT with 

¶ To serve as a “hub” to share information between different parts of the testbench 

 

 

Figure 2. Configuration objects in the verification environment. 

Whenever activity is detected on the register bus of the DUT, both the register model and 
configuration objects at all levels need to be updated (Figure 2).  As mentioned in the introduction, 
when a testbench is verifying a DUT that has only static configurations (which is true in many 
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projects), synchronization between the DUT and testbench is trivial, and there is no need for any of 
the synchronization solutions that will be presented later in this paper.   

Both the register model and the configuration object exist to serve the needs of the verification 
environment, and while there is some overlap, there are also important points of divergence. 

2.1 Overlap and Divergence Between Register Models and Configuration Objects 

In a block-level verification environment, the register model and configuration object may look very 
similar.  Let’s take a simple example of an 18-bit counter DUT with 4 configuration fields spread 
across 5 16-bit registers (see Figure 3). 

 

 

Figure 3. An example of 5 control registers in an RTL block. 

The UVM code for the register model of such a DUT is shown in Figure 4. 
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While some more code is required to specify the register addresses, field widths, and access types, 
we’ll leave it at this for now.  The code snippet for a possible configuration object for this block is 
given in Figure 5. 

 

 

 

 

 

 

 

While functionally usable, the configuration object in Figure 5 suffers from the fact that it is not 
generic enough - it is too closely tied to the register implementation of the DUT.  For example, a 
protocol specification will usually indicate that a parity bit is required, but it will not specify the 
encoding (0 could mean odd or even parity – it is up to the design to choose).  Recall that our goal as 
verification engineers is to create a verification environment that will work with any design 
implementing the protocol specification.  As for the max_count field, the fact that real hardware 
encodes a max_count of 1 as 0x0 and a max_count of 262144 as 0x3FFFF is an implementation detail 
that the configuration object should not be constrained to follow.  An improved configuration object 
is given in Figure 6, which replaces type bit with an enumerated type for the parity field (which is 
descriptive and not dependent upon encoding), and type bit[17:0] with an integer for the max_count 

class block _config  extends uvm_object;  

 rand bit        counter_en;      

 rand bit        parity;         // 0=odd, 1=even  

 rand  bit [17:0] max_count;      // 0x0=1, 0x3FFFF=262144  

 rand bit        reset_counter;  

 é  

endclass  

 
Figure 5. Configuration object for a block-level environment. 

Figure 4. A register model for a design with 5 control registers. 

class  block _reg_model extends uvm_reg_block;  

 ctrl1_reg ctrl1;  

 é 

 ctrl5_reg ctrl5;  

é 

class ctrl1_reg extends uvm_reg;   

 rand uvm_reg_field counter_en;  

é 

class ctrl2_reg extends uvm_reg;  

 rand uvm_reg_field parity ;  

é 

class ctrl3 _reg extends uvm_reg;   

 rand uvm_reg_field reset_counter ;  

é 

class ctrl4 _reg extends uvm_reg;   

 rand uvm_reg_field max_count_l ;  

é 

class ctrl5 _reg extends uvm_reg;   

 rand uvm_reg_field max_count_h ;  
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field (which holds the true maximum count value). 

Figure 6. Improved configuration object that is more generic. 

Having both the register model and configuration object in place, a test writer could randomize the 
configuration object at the beginning of a test and use the register model’s API to program the values 
into the DUT (Figure 7).  Translation from the configuration object’s parity and max_count fields into 
DUT-specific values happens in the test’s configuration sequence. 

 

 

class  simple_test extends base_test;  

 é      

 task run_phase(uvm_phase phase);  

   é            

   env.cfg.randomize();  // randomize the intended configuration  

   é 

   config_ sequence.start(é); // program the configuration to the DUT 

  é 

endclass  

 

class  config_seq extends base_seq;  

 task body();  

   é    

   // translate parity config setting to DUT encoding  

   if (env.cfg.parity == ODD)  

     env.regmodel.ctrl2.parity.set(0);  

   else if (env.cfg.parity == EVEN)  

     env.regmodel.ctrl2.parity.set(1);  

   

   // translate max_count config setting to DUT encoding  

   translated_max_count = env.cfg.max_count ï 1;  

   env.regmode.ctrl4.max_count_l.set(translated_max_count[15:0]);  

   env.regmode.ctrl5.max_count_h.set(translated_max_count[17:16];  

 

   env.regmodel.c trl1.update(status);  

        é 
   env.regmo del.ctrl5 .update(status);  

Figure 7. A test that randomizes the configuration object and writes the DUT registers. 

class block _config extends uvm_object;  

 rand bit               counter_en;  

 rand my_parity_ enum    parity ;   //POSITIVE, NEGATIVE  

 rand int               max_count;  

 rand bit               reset_counter;  

 é  

 constraint c_max_count {  

   max_count >= 1;  

   max_count <= 262144;  

 }  

endclass  

 



SNUG 2016 

 

Page 9 

copyright (c) 2016 Verilab & SNUG 

Configuring a Date with a Model:  A Guide to 
 Configuration Objects and Register Models 

Though not shown here, an equally valid approach is to randomize the register model, and use the 
random values obtained to program the DUT.  In the case of directed test cases, no randomization of 
either the configuration object or the register model is needed – instead the test scenario will 
randomize a sequence that has knobs in it to control the programming of the DUT registers. 

2.2 Can We Do Without a Configuration Object? 

In the simple example shown in Figure 7 we have left out one very important detail, which is how the 
configuration object will remain in sync with the DUT if, say for example, a register write is done in a 
test case without using the configuration object’s field.  This is shown in Figure 8. 

 

 

Without some extra code, the configuration object’s counter_en field would be whatever it was 
randomized to earlier (or 0 had it not been randomized at all), while the DUT would have a ‘1’ in the 
counter_en field, leading to an unacceptable risk of divergence.  We’ll get into the details of what that 
extra code entails in section 3, but at this point it begs the following question: do we really need to 
have a separate configuration object if we already have a register model? 

The answer to this question is “yes, we do”.  The main reason for having a separate configuration 
object comes down to the concept of encapsulation.  A proper verification environment is 
encapsulated such that it can interoperate with any design that implements the protocol or design 
specification, regardless of that design’s register implementation.  In the case of a verification IP (VIP) 
for a standards-based protocol this is even more crucial – the VIP could potentially be needed for 
multiple DUTs simultaneously within a given company, each with its own register implementation, 
each implementing the same protocol.  We would not want to have to modify the VIP for each 
different DUT.  While it may seem like a lot of extra time and effort to maintain a separate testbench 
configuration, according to the authors’ and their colleagues’ experiences across many projects, the 
reality is that the investment will pay off in both reduced time and effort in the long-run. 

Beyond encapsulation, some other consequences of operating without a configuration object are:   

¶ The verification environment will forever be tied to the version of the register model used at 
that time (e.g. UVM 1.2 register adaptation layer). 

¶ Any changes to the design’s register implementation will require changes to the verification 
environment - for example if a DUT configuration that initially spanned one physical register 
were changed to span multiple physical registers. 

2.3 Operating With a Configuration Object 

To avoid the drawbacks outlined above, a better solution is to operate with a configuration object 
and to put code in place to keep it in sync with the DUT.   The mechanism to keep the configuration 
object up-to-date is passive monitoring - in other words, the configuration object does not get 
updated from a testbench driver, but instead gets the updates from register model callbacks, with the 
register model having received its updates from a testbench monitor[1] (Figure 9).  This ensures that 
the configuration object is properly updated regardless of the source of register traffic (e.g. block-
level testbench driver, on-chip CPU, off-chip CPU, system-level testbench driver). 

env.regmodel.ctrl1.counter_en.set(1);  

env.regmodel.ctrl1.update(status);  

 

 Figure 8. Updating only the register model invalidates the configuration object. 
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Figure 9. Register model callbacks update the configuration objects. 

Note that while most of the configuration object fields have a counterpart in the registers of both the 
model and the DUT, not all register fields have an equivalent in the configuration object. For example, 
read-only and interrupt status fields have no counterpart in configuration objects since they do not 
hold information that is relevant to the configuration of interface protocol UVCs or the enclosing 
environment.  Another important point is that interface-level protocol UVCs should never have any 
reference to a register model (in either the agents or the UVC environment).  Doing so would prevent 
reuse of the UVC with other DUTs implementing the same protocol specification.  By contrast, the 
enclosing testbench environment, which instantiates the UVCs and the register model, will naturally 
have a reference to the register model.  This enclosing testbench environment is responsible for 
keeping the testbench in sync with the DUT, by making use of the register model.  This is discussed 
in the next section. 

3. Keeping the Configuration Object In Sync with the DUT 

We now turn our attention to nuts and bolts of what’s needed to make the configuration object get 
updated whenever there is a change to the DUT’s configuration.  This is accomplished by using 
register model callbacks that are executed when a register access is detected.   

As described in [1], the post_predict method of the uvm_regs_cbs callback class can be used to 
passively monitor changes to DUT registers.  The callback is executed by uvm_reg_field::predict after 
any observed read or write operation, irrespective of the source of the bus traffic, including back-
door access (for more details on the use of UVM register model callbacks for passive monitoring see 
[1]).   As such, we can implement the post_predict callback on each of the register fields of the UVM 
register model that contain configuration information.  In the body of the post_predict callback, we 
assign the value being written to the register field to the corresponding field of the configuration 
object.  This is done using the following steps:   

1. Define the callback classes for each DUT configuration register field 

2. Create the field callback instances in the environment 

3. Assign each field callback to a register field in the register model 

The code in Figure 10 corresponds to step 1, and is in the form of a macro so that it can be easily 
applied to each register field in the DUT.  The example in Figure 10 is for the simple case of a 1-bit 
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configuration field1.  Step 2 is shown in Figure 11, and step 3 in Figure 12.  Recall that macros have 
global scope in SystemVerilog, and therefore the macro code presented in the following figures could 
go anywhere in the testbench.  However, for ease of readability it is recommended to put it all 
together within a single file dedicated to register model callbacks. 

 

 

 

 

 

 

 

 

                                                             

 
1 More complex examples can be found in the sample code download accompanying this paper, dealing with 
enumerated types and configuration fields that span multiple registers. 

class block _env extends uvm_env;  

 é  

 // register callbacks  

my_counter_en_cb counter_en_cb = new();  

  … 

Figure 10. Step 1: Define the callback classes for the fields. 

Figure 11. Step 2: Create the field callback instances in the environment. 

// define macro for adding callback classes to register fields  

`define MY_REG_CB_CLASS(fieldname) \  

class my_``fieldname``_cb extends uvm_reg_cbs; \  

 block _config config_obj; \  

 é  

 virtual function void post_predict(input uvm_reg_field  fld, \  

                                    é );\  

   if  (kind == UVM_PREDICT_WRITE) begin \  

     config_obj.fieldname = value; \  

 endfunction: post_predict \  

endclass: my_``fieldname``_cb  

 

// define the callback classes for each DUT register field  

`MY_REG_CB_CLASS(counter_en)  

é 
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3.1 Designs that Change Pseudo-Static Configurations on Triggers 

Recall that the configuration object shown in Figure 6 had one field per DUT configuration field.  
While this is sufficient for many designs, it does not support those designs that have a delay between 
the time at which DUT configuration registers are updated with new data, and the time at which the 
DUT makes use of that new configuration.  This delay can result from a design choice or protocol 
directive to make the previous configuration remain active until all relevant registers have been 
written.  Then, with a single trigger (usually a write to a “trigger” register field), the DUT replaces the 
old configuration with all of the newly programmed register values.  This approach eliminates any 
strange behavior that would result from having a mix of old and new configurations both active at 
the same time.  This topic is discussed in [1] from the perspective of keeping the register model in 
sync with the DUT.  In this paper we approach the topic from the perspective of keeping the testbench 
configuration in sync with the DUT.  To handle such designs, we add what is called a “pending” field 
to each field of the configuration object (see Figure 13). 

 

 

 

Note that we have done the following to the configuration object: 

¶ Duplicated every field and added the suffix “_pending” 

// define macro for adding callbacks to register model fields  

`define  MY_ADD_CB(cb, regpath) \  

 cb .config_obj = cfg; \  

 é\  

 uvm_reg_field_cb::add(regmodel.regpath, cb);  

 

class block _env extends uvm_env;  

 

 function void build_phase(uvm_phase phase);  

   // Assign each field callback to a register field  

   `MY_ADD_CB(counter_en_cb, ctrl1.counter_en)  

   é 

 endfunction: build_phase  

 

 Figure 12. Step 3: Assign each field callback to a register field in the register model. 

class block _config extends uvm_object;  

 

 rand  bit  counter_en_pending ;  

 bit       counter_en;  

  

 rand  my_parity_enum     parity _pending ;  

 my_parity_enum          parity ;  

 ...   

endclass  

 

 Figure 13. Add pending fields to configuration object for synchronization. 
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¶ Made these pending fields “rand” and removed “rand” from the other fields 

There are two reasons for using this pending/actual approach: (1) to make it easy for the test writer 
to change configurations, and (2) to ensure that the testbench doesn’t use the configuration until the 
proper moment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When using the active mode style of operation where the register model is randomized prior to 
configuring the DUT, the pending fields are not needed, but do no harm by being present. 

When using the active mode style of operation where the configuration object is randomized prior to 
configuring the DUT (as shown in Figure 14) the pending fields can be interpreted as “intended 
configuration” values.  The pending fields hold the value that the DUT is programmed to use but is 
not yet using.  This goes back to the trigger concept discussed earlier.  At the time the trigger is 
written, the pending fields are copied to the actual fields, keeping the configuration object in sync 
with the DUT.  This can be accomplished with a callback on the trigger field, similar to what was done 

class simple_test extends base_test;  

 é      

 task run_phase(uvm_phase phase);  

   é            

   env.cfg.randomize();      // randomize the pending fields  

   config_sequence.start(é); // program the configuration to the DUT  

   é      

class config_seq extends base_seq;  

 task body();  

 

   env.regmodel.ctrl1.counter_en.set(env.cfg.counter_en_pending);  

   env.regmodel.ctrl1.update(status);  

        é 

   env.regmodel.trig_reg.trigger.set(1);  

   env.regmodel.trig_reg.update(status);  // trigger config change  

 

Figure 14. Tests can change configurations and ensure they aren’t used too soon. 



SNUG 2016 

 

Page 14 

copyright (c) 2016 Verilab & SNUG 

Configuring a Date with a Model:  A Guide to 
 Configuration Objects and Register Models 

with the other configuration fields (see Figure 15). 

 

 

 

 

Figure 16 shows the timing of the different DUT and testbench configuration fields when operating 
in active mode (e.g. as in Figure 14 where a test makes assignments to the pending fields by calling 
cfg.randomize() ).  Figure 17 shows the timing when operating in passive mode, that is, when there 
is a monitor that takes notice of bus activity going to those registers and executes the post-predict 
callback to assign to the pending fields. 

 

 

Figure 16. Timing of active mode operation. 

Figure 15. Callback on trigger field assigns configuration object pending fields to actual fields. 

class my_trigger_cb  extends uvm_reg_cbs;  

 block _config config_obj;  

 

 function void post_predict (input uvm_reg_field  fld,  

                            é); 

   if (kind == UVM_PREDICT_WRITE) begin  

     if (value == 1)  

       config_obj.counter_en = config_obj.counter_en_pending;  

       config_obj. parity      = config_obj. parity_ pending;  

       é 

   end  

 endfunction  

endclass  
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The moment at which the testbench learns about the trigger (via the trigger’s post_predict callback 
shown in Figure 15) is different than the moment at which the DUT makes use of the trigger, leading 
to one clock cycle of divergence between the DUT and testbench configuration (as highlighted in 
Figure 16 and Figure 17).  Furthermore, in many designs the configuration register signals 
experience a clock-domain-crossing (CDC) from the register clock domain to the system clock domain 
(see Figure 18).  This leads to an even greater period of divergence between the DUT and register 
configurations.   

 

 

 

As long as the testbench can hold off sending stimulus during this window of divergence, everything 
is fine.  This is usually the case for pseudo-static configurations.  In the case of dynamic 

Figure 17. Timing of passive mode operation. 

Figure 18. Clock domain crossing from registers to system. 
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configurations, such momentary divergence could be unacceptable for some designs.  Deciding 
whether or not the divergence is tolerable in a given project is a skill that requires some experience, 
and is beyond the scope of this paper.  In the next section we explore what happens in the case of 
dynamic configurations where any momentary divergence between the testbench and DUT 
configurations is unacceptable. 

3.2 What About Designs With Dynamic Configurations? 

Let’s consider a simple counter DUT as shown in Figure 19.  The design has two dynamic 
configuration fields counter_en and reset_counter, and one pseudo-static configuration field 
max_count.  Fields counter_en and max_count experience a CDC from the register clock domain to the 
system clock domain, while reset_counter does not.   

 

 

Figure 19. RTL code for a simple counter design. 

If the project requirements call for cycle-by-cycle comparison between expected and actual counter 
values, the testbench will need to be in perfect sync with the DUT’s dynamic configuration settings2.   

One way of achieving this synchronization (which we are not advocating in this paper however) is to 
have the testbench attempt to model the CDC of the dynamic configuration signals from the register 
clock domain to the system clock domain.  In our opinion this approach is both time consuming and 
fragile, and is not recommended.  Another approach, which is invalid in the authors’ opinions, is to 
snoop the configuration signals directly from the system clock domain RTL signals themselves.  The 
problem with this approach is that it could mask important bugs in the DUT.  For example, imagine if 
a test were to try programming a 1 into field counter_en, but because of some bug, value 0 actually 
got written; or if the test did not write a 1 to counter_en, but because of a bug, the DUT started 
counting anyway.  In both of these instances the testbench would just believe whatever the DUT was 
doing (start counting when the DUT starts, stop counting when the DUT stops) and tests would have 
falsely passing results.  With the snooping approach the verification environment cannot achieve its 
objective of guaranteeing a bug-free DUT. 

                                                             

 
2 One DUT encountered by the authors captured incoming data to a memory using dynamic configuration fields 
“start capture” and “stop capture”; any divergence between the DUT and testbench configurations would result 
in mismatches between the expected and actual memory contents. 

module counter  (clk,reg_clk, rst_n, count_val );  

  é 

  always @(posedge clk or negedge rst_n) begin  

    if (!rst_n || ctrl3_reg.reset_counter) begin  

      count  <= 0;  

    end  

    else if (ctrl1_reg_resync.counter_en &&  

             count < max_count) begin  

      count <= count + 1;  

    end  

  end  

endmodule: counter  
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Before getting into the details of the code we propose to handle this situation, we need to first look 
at the timing of how things work in a testbench that has a configuration object, a register model, and 
a DUT with dynamic configuration fields experiencing CDCs.  In Figure 20 we see that the post_predict 
callback is executed at the time that the register contents change value in the register clock domain 
(as indicated by counter_en_pending changing to 1); this is because the register model’s passive 
prediction scheme will invariably be implemented this way.  Next we see that some time that elapses 
before the RTL register value is resynchronized to the system clock domain, where it can be used by 
the DUT (as indicated by “counter_en in use” changing to 1).  So as in the situation with the trigger 
register shown earlier, the code presented up until this point suffers from a window of divergence 
between the testbench and DUT configurations for this dynamic configuration field. 

 

Figure 20. Testbench does not know when a new configuration field takes effect. 

In the next section we provide a solution for making the configuration object be in sync with the 
DUT’s dynamic configurations, so that the testbench knows exactly when a new configuration 
becomes in use. 

4. Synchronizing the Testbench with DUT Dynamic Configurations 

We now present a detailed solution for keeping the testbench’s configuration object in sync with the 
DUT’s dynamic configurations.  Note that all of the code presented in this section also requires an 
environment containing the register model callback code presented in section 3, as well as the 
pending fields in the testbench’s configuration object. 

Recall that our goal is for the testbench to make use of the new dynamic configuration value at the 
exact same moment that the DUT makes use of it.  In terms of code, this comes down to making the 
assignment from the configuration object’s pending field to its actual field happen at the same 
simulation time that the DUT’s “in use” signal changes (see Figure 20).  To accomplish this, we start 
by adding a task that monitors changes to the DUT’s dynamic configuration field signals in the system 
clock domain (see Figure 21).  This code uses a helper macro SYNCHRONIZE_CONFIG_FIELD shown 
in Figure 22. 

 

class block_config extends uvm_object;  

  é  

  task  keep_config_in_sync_with_dut();      

    `SYNCHRONIZE_CONFIG_FIELD(counter_en)      

    `SYNCHRONIZE_CONFIG_FIELD(parity )  

    é 

  endtask  

  é 

  function new(é) 

    é 
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Upon any change to the RTL signal of the configuration field in the system clock domain, task 
keep_config_in_sync_with_dut assigns the configuration object’s pending field to the actual field (see 
Figure 22).  It then checks the RTL value against the configuration object’s field value.  This check can 
save a lot of time when trying to diagnose the cause of a failing simulation that resulted from a 
divergence between the testbench and DUT configurations.  Note that the code in Figure 22 assumes 
a virtual interface exists in the environment (named “vif”) with paths to the RTL register signals in 
the system clock domain.  

 

 

We stress that while this solution involves probing inside the DUT to the RTL signals, it does not 
compromise the integrity of the verification environment because it is only looking at changes in the 
register contents, not their values.  As such, bugs like the one described earlier (test case programs 
“x”, DUT erroneously uses value “y”) will be caught.  Notice the “fork/join_none” multi-threaded 
approach, which allows task keep_config_in_sync_with_dut to fork off each thread simultaneously on 
each DUT dynamic configuration field at the beginning of a simulation. 

We have now solved the problem of keeping the configuration object in sync with DUT dynamic 
configurations fields that experience CDCs (see Figure 23).  The sections that follow describe how to 
handle particular situations that will likely arise when implementing this in a real testbench. 

 

`define SYNCHRONIZE_CONFIG_FIELD(field) \   

fork \  

 forever begin \  

   @(vif.field ); \  

   field = field``_pending; \  

   if (field != vif.field) \  

     if (check_register_values) \  

       `uvm_error("", $sformatf("Field field in config_obj has value 

'h%0h but RTL signa l has value 'h%0h", field, vif. field)) \  

 end \  

join_none  

 

Figure 22. Any change in the DUT field prompts the testbench to start using the pending value. 

Figure 21. Use a task to monitor when the DUT updates any new value. 
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Figure 23. Testbench dynamic configuration field updates at same time as DUT. 

4.1 Handling X’s at Time Zero 

The transition of DUT signals from X to logic 1 or 0 that frequently occurs at the beginning of a 
simulation would cause the “@vif.field” in Figure 22 to unblock, resulting in unwanted behavior.  To 
handle this, we add a statement that waits until values other than X appear on the RTL signal of the 
dynamic configuration field in the system clock domain (see Figure 24). 

 

 

 

4.2 Handling Signals that Have No Resynchronization 

There is an additional challenge if the DUT has dynamic configuration fields that are not 
resynchronized to the system clock domain.  This will cause the register value to be used by the DUT 
as soon as it changes in the register clock domain.  The synchronizing task we defined previously 
cannot handle this scenario since there would be a race between the post_predict callback updating 
the pending value and the assignment of the pending value to the actual field by configuration object 
method keep_config_in_sync_with_dut (both will happen at the same simulation time).  Such a race 
would lead to unpredictable results and potential divergence between the testbench and DUT 
configurations.   

To handle this we use events.  The configuration object is modified to add one event field per dynamic 
configuration field, that triggers at the moment the pending field is updated by the post-predict 
callback (see Figure 25).  By waiting on that event, we can ensure that post_predict has updated the 
pending field before it gets assigned to the actual field by the SYNCHRONIZE_CONFIG_FIELD macro 
(see Figure 26 and Figure 27). 

 

`define  SYNCHRONIZE_CONFIG_FIELD(field) \   

fork \  

 forever begin \  

   wait (!$isunknown(vif.field)); \  

   @(vif.field ); \  

   field  = field``_pending; \  

   é 

 

Figure 24. Avoid issues from X at time zero. 
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class block _config extends uvm_object;  

 

 rand bit  counter_en_pending;  

 bit       counter_en;  

 uvm_event counter_en_changed_evt;  

 ...   

endclass  

 

`define MY_REG_CB_CLASS(fieldname) \  

class my_``fieldname``_cb extends uvm_reg_cbs; \  

 block _config config_obj; \  

 é  

 virtual function void post_predict(input uvm_reg_field  fld, \  

                                    é );\  

   if (kind == UVM_PREDICT_WRITE) begin \  

     config_obj. fieldname``_pending = value; \  

      if (config_obj.fieldname !== value) \  

        config_obj.fieldname _changed_evt.trigger(); \  

   é 

 endfunction: post_predict \  

endclass: my_``fieldname``_cb  

 

Figure 25. Use events to avoid races in signals that are not resynchronized. 
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Figure 27. Delta time expansion showing how events prevent race condition on pending field. 

4.3 Handling Resets 

When a hard reset occurs, all registers in the DUT should return to their default values.  We can keep 
the register model in sync with the DUT by calling regmodel.reset(), which will return all of the 
register model field values to their defaults.  Keeping the configuration object in sync will require 
some extra consideration though.  Recall that the post_predict callback only executes when there is a 
bus transaction to the register field, and therefore does not execute upon reset.  However, on any 
change to the actual RTL field, the configuration object method keep_config_in_sync_with_dut will 
perform a comparison with the last pending value and the RTL signal of that register.  With the code 
we have presented thus far, such a comparison would fail because the pending field would not have 
the reset value in it.  The solution is therefore to make the configuration object’s pending fields get 
the reset values at the time of the reset, so that this check will pass. 

`define SYNCHRONIZE_CONFIG_FIELD(field) \   

fork \  

 forever begin \  

   wait (!$isunknown(vif.field )); \  

   @(vif.field ); \  

   field``_changed_evt.wait_on(); \  

   field ``_changed_evt.reset(); \  

   field = field``_pending; \  

   if (field != vif. fiel d) \  

     if (check_register_values) \  

       `uvm_error("", $sformatf("Field field in config_obj has value 

'h%0h but RTL signal has value 'h%0h", field, vif.field)) \  

 end \  

jo in_none  

Figure 26. Use events to avoid race conditions between updates and use of pending values. 



SNUG 2016 

 

Page 22 

copyright (c) 2016 Verilab & SNUG 

Configuring a Date with a Model:  A Guide to 
 Configuration Objects and Register Models 

To accomplish this, we write a separate “reset” method for assigning reset values to all pending fields 
of the configuration object.  The environment can call the configuration object’s reset method at the 
time a reset is noticed, and the configuration object and the DUT will be in sync because the pending 
fields will match the actual RTL values at the time of reset.  A good way to do this is to encapsulate 
the resetting of the register model and configuration object into the run phase of the enclosing UVM 
environment, so that it will execute in both active and passive operation of the environment (Figure 
28).  

 

 

 

As a final note, recall the field``_changed_evt we introduced in section 4.2 .  In the case of a reset, 
post_predict does not execute, and therefore this event is never triggered.  So the synchronization 
code needs to be modified to not wait for that event in the case of a reset (Figure 29). 

 

 

 

4.4 Handling Auto-clear Registers 

It is common for some register fields to auto-clear to 0 one clock cycle after they are set to 1 by a 

`define SYNCHRONIZE_CONFIG_FIELD(field) \  

fork \  

  forever begin \  

    wait(!$isunknown(vif.field)); \  

    @(vif.fiel d); \  

    if ( !(!vif.rst_n) ) begin \  

      field``_changed_evt.wait_on(); \  

      field``_changed_evt.reset(); \  

    end \  

    field = field``_pending; \  

    é 

 

Figure 28. Use passive monitoring to encapsulate all reset operations. 

Figure 29. Synchronization code must not wait on events on reset. 

class my_env extends uvm_env;  

  ...  

  task run_phase(uvm_phase phase);  

    super.run_phase(phase);  

    fork  

      forever begin  

        @(negedge tb_vif.rst_n);  

        regmodel.reset(); // reset register model  

        cfg.reset();      // reset configuration object  

      end  

    join_none  

  endtask: run_phase  
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write access.  When the RTL signal of an auto-clear dynamic configuration register field transitions 
to 0, the synchronization code cannot wait for the “field changed” event introduced in section 4.2 
because the transition to 0 is done by hardware, not by a register access (hence no post_predict 
callback is executed).  Also, when the RTL signal transitions to 1, the pending field of the configuration 
object needs to be updated to be 0, because that is its expected future value.  With this code in place 
(Error! Reference source not found.), the checks on pending values versus actual RTL values 
continue to work for auto-clear fields. 

 

 

5. Conclusion 

This paper has demonstrated the roles of configuration objects and register models, and how they 
can work together within a verification environment to keep the DUT and testbench in sync.  Having 
a configuration object that is separate from the register model is important for achieving proper 
encapsulation of the verification environment.  Developing a register model, configuration object, 
and implementing the ideas in this paper to achieve synchronization between the testbench and DUT 
is hard work, but from the authors’ experience, it will save both time and effort over the course of a 
project.   

All code examples in this paper were simulated using VCS 2015.09-SP2 and UVM1.2.  Working sample 
code can be download from http://www.verilab.com/resources/source-code.  The sample code 
demonstrates how to keep the dynamic configuration register fields of a simple counter RTL design 
(as described in section 3.2 ) in sync with a UVM testbench, using the register model callback and 
configuration object synchronization techniques discussed in sections 3 and 4 of this paper.  See the 
README.TXT file under the doc directory of the download for instructions. 
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` define SYNCHRONIZE_CONFIG_FIELD(field) \  

fork \  

  forever begin \  

    localparam bit A UTOCLEAR = (`"field`" == "reset_ counter"); \  

    @(vif.field ); \  

    if ( ! ( (!vif.rst_n) || \  

       (AUTOCLEAR && field  == 0)) )  begin \  

      field``_changed_evt.wait_on(); \  

      field``_changed_evt.reset(); \  

    end \  

    field = field``_pending; \  

    é 

    if ( AUTOCLEAR && field == 1) \  

      field ``_pending = 0; \  

    é 

join_none  

 

Figure 30. Handling auto-clear registers. 

http://www.verilab.com/resources/source-code

