
This presentation, and the associated paper, were prepared for the DVCon 

conference in March 2015. 

 1 Copyright © Verilab Inc, 2015 



This paper considers some issues around reuse in simulation of assertions 

(and related code) originally written to implement a formal model checking 

environment. For expert users of formal model checking, this is nothing new. 

However, the recent great increase in uptake of formal verification techniques, 

often by groups and engineers who previously have had little experience with 

them, means that it may be useful to codify some guidance covering how such 

reuse can be achieved effectively in practice. 

 

 2 Copyright © Verilab Inc, 2015 



This paper specifically reports on experience with the verification of a large 

bus-interconnect block. Interfaces on the boundary of this block used standard 

bus protocols, so that existing verification IP could be used to constrain and 

check those interfaces. The design was too big to be verified as a single DUT 

by formal model checking tools, so the overall verification strategy (which had 

been used successfully on earlier similar projects) called for constrained-

random simulation of the entire design. Individual sub-blocks within the DUT, 

by contrast, were exclusively verified using formal model checking; no 

simulation testbenches were created for these internal blocks. 

 

The agreed verification strategy also stipulated that formal testbenches for the 

internal sub-blocks should remain in place for simulation, so that all the formal 

assertions would also be checked in simulation. The remainder of the paper 

discusses why and how this was done, and indicates some of the added 

verification confidence that it provided, and some problems that arose in 

practice. 

 

3 Copyright © Verilab Inc, 2015 



Of course, reuse of code from formal to dynamic verification would not even be 

possible were it not for the standardization of SystemVerilog Assertions (SVA). 

Not many years ago, almost every formal tool used its own notation to capture 

assertions and properties. Now we can write a property just once, and be 

confident that it will have the same meaning both in simulation and in formal. 

 

In practice, we encountered a few minor issues of portability of language 

constructs. These issues were always easily worked around. 

 

There was a much bigger set of problems to face, though, in using the same 

verification code in both formal and simulation. The idioms, kinds of assertion, 

and styles of auxiliary logic used by formal verification engineers are sharply 

different from those commonly encountered in simulation environments. It is 

those differences that caused us some difficulties in migrating from one 

verification modality (formal model checking) to another (simulation). 

 

4 Copyright © Verilab Inc, 2015 



First it is useful to consider the mechanics of how we attached our formal 

testbenches to their device under test (DUT). We wrote each testbench as a 

module, and then used the SV bind construct to inject that module into the 

DUT itself as a bound instance. If the testbench's parameter and port lists 

exactly match those of the DUT module, then it becomes rather easy to 

establish the necessary connections (although it's a little tedious that .* 

connection doesn't work for parameters!). 

 

Of course, the testbench module may in its turn contain instances of other 

modules. That internal structure does not affect the general layout described 

here. 

 

This binding makes it trivially easy to include the formal testbenches into the 

simulation environment, because the bind statement does not need to specify 

the full hierarchical path of the DUT module instance but only its module 

name. 

 

5 Copyright © Verilab Inc, 2015 



At first it seems completely unnecessary to re-run formal testbenches in 

simulation in this way. After all, formal model checking is inherently more 

thorough than simulation which only exercises individual traces. However, 

there were several important reasons why we obtained real value from this 

reuse. 

For some of the more complex internal blocks, we could obtain only bounded 

rather than exhaustive proof of some important assertions. Although there are 

well-known techniques for establishing confidence in such incomplete proof, it 

provided considerable added confidence to see the same assertions exercised 

over much longer traces than were possible in formal verification. 

Another interesting and often overlooked feature of assertions is that they are 

inherently bound to individual internal blocks of the DUT, giving a level of 

detailed internal probing that is difficult to replicate in a simulation environment. 

This gave access to excellent debug and coverage information that would 

have been very hard to obtain any other way. 

The most important reason, though, was the ability of simulation to uncover 

buggy assumptions (constraints) in our formal code. We discuss this in more 

detail in the next few slides. 

 

6 Copyright © Verilab Inc, 2015 



A major concern on any formal verification project is the risk that assertions 

and assumptions may be buggy, and fail to reflect the design's specification 

correctly. Broadly, we can identify faulty assertions and assumptions in four 

categories. 

Excessively strict assertions will fire (indicate an error) on correct, valid DUT 

behavior. This is simply a debug problem, because the error is self-evident. 

Insufficiently strict (too lax) assumptions will permit out-of-spec behavior 

on DUT inputs. In most cases this will give rise to faulty DUT behavior, and 

although the debug may be quite troublesome, this problem too is usually self-

evident. 

Overconstraining (excessively limiting) assumptions will restrict the set of 

possible DUT input behaviors so that some specified activity is not properly 

tested. This is very dangerous, because it will not usually give rise to any 

evident error. If the testbench is instrumented with many coverage points, such 

problems may come to light, but it's likely that the same misunderstandings of 

the spec will lead to buggy assumptions and to matching buggy cover 

directives. It is important to find a strategy for identifying such issues. 

Over-lenient assertions may fail to detect some kinds of DUT error. Again 

this is dangerous, because it will not usually give rise to any obvious error. 

7 Copyright © Verilab Inc, 2015 



A key aspect of our formal verification strategy was the use of reversible formal 

verification interface blocks to capture the assertions and assumptions related 

to the interface between a pair of DUT blocks. Each block's formal testbench 

contained an instance of the reversible interface block, configured by 

parameterization to assert properties on the DUT's outputs and to assume 

properties on its inputs. This provided an implementation of the familiar 

assume-guarantee methodology in formal verification, because overconstraints 

(assumptions that excessively limit the possible behaviours) on a block's 

inputs would be exposed through inappropriate failures of the same 

assumptions when they are used as assertions on the opposite block's 

outputs. Similarly, excessively generous assertions on a DUT's outputs that 

might fail to pick up DUT misbehaviour would underconstrain the opposite 

block's inputs when used as assumptions, and therefore would be very likely to 

provoke faulty behavior and assertion failures elsewhere. 

 

In practice we had a comprehensive system of macros and parameterization 

to automate this reversibility as far as possible, but the principles were exactly 

as illustrated here. 

 

8 Copyright © Verilab Inc, 2015 



The reversible interface technique worked extremely well in some situations, 

but was much less helpful in others. It is ideal when an interface between two 

blocks follows some self-contained protocol, so that everything the interface 

block needs to know is explicit from traffic on the interface. In many parts of 

our internal architecture, however, there were complicated relationships among 

numerous interfaces linking different blocks. Although it was not difficult to 

capture these relationships in each formal testbench, the resulting code could 

not be reversed and re-used on other formal testbenches. Consequently, there 

were many assumptions and assertions that could not be validated by the 

assume-guarantee methodology in formal verification. 

 9 Copyright © Verilab Inc, 2015 



The consequence? We need to simulate the formal testbenches, to provide 

the desired assume-guarantee checking. 

 

 10 Copyright © Verilab Inc, 2015 


